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Abstract

Studies in Optics and Optoelectronics

by

Steven John Feinman Byrnes

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Feng Wang, Chair

This thesis will detail four projects aimed at understanding and applying the principles
of optics and optoelectronics.

In Chapter 1, we describe phase-sensitive sum-frequency vibrational spectroscopy (PS-
SFVS), a nonlinear optical technique that can probe the molecular structure of the top few
monolayers of a liquid-vapor interface. We use this technique to investigate the air-water
interface, using a number of water samples with different dissolved salts. The information
is used to draw inferences about the surface propensity of these salt ions—information that
can shed light on both atmospheric chemistry and water solvation theory. We also give a
detailed description of the experimental methodology for PS-SFVS, its rationale, and the
issues that can arise.

PS-SFVS measurements, such as those described in Chapter 1, can be fruitfully used
by comparing them with the signal predicted by molecular simulation. However, the rela-
tionship between a molecular configuration and its nonlinear optical signal is not thoroughly
understood in the theoretical chemistry community. In particular, the procedures used in the
literature to predict an PS-SFVS signal within a molecular simulation have been ambiguous,
depending on arbitrary parameters. In Chapter 2, we review PS-SFVS theory at a funda-
mental level, then map it to modern simulation methods, thereby explaining the ambiguities
as consequences of improper truncation of a multipole expansion. A molecular-dynamics
simulation of the water-air interface is used as an example, illustrating the consequences of
different simulation methods and suggesting which ones should be most accurate.

Chapter 3 explores a different aspect of nonlinear optics: The compression and character-
ization of ultrafast pulses of light. These pulses have been explored for a variety of scientific
and technological applications. Ideally, an optical pulse can be reduced in duration up to the
limit imposed by its spectral bandwidth via the uncertainty principle. However, the presence
of “nonlinear chirp” (different frequencies arriving at different times in a nonlinear fashion),
which is especially common in mode-locked fiber lasers, can be a major factor preventing
the shortening of a pulse. We describe a new technology, a type of patterned glass phase
plate, that promises to reduce nonlinear chirp in a convenient, adjustable, inexpensive, and
high-throughput manner. After showing simulations, we describe how we made the plate,
and then how we used frequency-resolved optical gating (FROG) to watch the plate change
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the duration and shape of a pulse from a fiber laser.

Finally, Chapter 4 discusses a new architecture for solar cells that uses the field effect,
rather than the traditional p-n junction, to separate charge. This could be advantageous
for semiconductor materials that are difficult to dope to both p- and n-type, such as oxides,
sulfides, and nanoparticles. We discuss the underlying physics and rule-of-thumb design
principles, along with both finite element simulations and experimental verifications.
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1 Phase-sensitive sum-frequency spectroscopic measure-

ment of air-aqueous solution interfaces

1.1 Overview

1.1.1 SFG

Sum-frequency generation (SFG) is a nonlinear-optical process where light at frequencies ω1

and ω2 interact to generate light at the “sum frequency” ωSF = ω1 + ω2. In the electric-
dipole-order approximation, the SFG process is described by:

~PSF =
↔
χ

(2)
: ~E1

~E2 (1.1)

where ~PSF is the sum-frequency polarization, ~E1 and ~E2 are the electric fields at frequency ω1

and ω2, and the equation holds at every point in space. (Written out with Cartesian indices

j, `,m, the equation is: PSF,j = χ
(2)
j`mE1`E2m.) To lowest order, SFG is symmetry-forbidden

in a centrosymmetric medium; therefore, SFG primarily probes the surface.

SFG is a generalization of second-harmonic generation (SHG) (where ω1 = ω2). Although
SFG is experimentally more difficult than SHG (two beams must be separately generated,
then aligned both spatially and temporally), it is a more flexible and powerful technique. In
this work, we use SFG as a surface-sensitive vibrational spectroscopy, by sweeping ω1 across
an infrared vibrational mode.

1.1.2 The air/water interface

This study uses SFG to investigate the air/water interface. Water interfaces play key roles
in many areas of science, from protein folding to corrosion chemistry, but many aspects
of them remain poorly understood [1, 2]. One branch of this field involves the behavior
of dissolved ions at an air/water interface: In what concentrations are the ions present at
the surface, and how exactly are they incorporated into the molecular surface structure of
water? These questions are particularly important in atmospheric chemistry, because some
chemical reactions in the atmosphere are known to occur in a heterogeneous fashion, where
a vapor molecule reacts directly with a dissolved molecule at the surface of a water aerosol
droplet [1, 3–5] (Fig. 1.1).

The simplest understanding of inorganic ions at the water surface is the Onsager model [6],
in which the water and air are treated as a smooth, featureless dielectrics. By classical
electrostatics, any charge in the water is repelled away from the interface by the image-charge
effect. However, recent studies have confirmed that this picture is an oversimplification, and
some ionic species can, in fact, be found at the outermost surface of water [7]. The effects
are difficult to predict theoretically, as an ion’s surface affinity is highly sensitive to poorly-
determined simulation parameters [8]. Therefore, experimental measurements of the surface
of water solutions are particularly important.
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OH

Cl-

Water
droplet

Figure 1.1 – Postulated heterogeneous reaction between a vapor molecule (neutral OH
derived from UV-generated ozone) and a dissolved ion (Cl−) at the outermost surface. (After
Ref. [3].)

SFG is one of only a few techniques that can reliably probe the top few monolayers
of a liquid, offering information unavailable by any other technique. For example, surface
tension [9], surface potential [10], and zeta potential [10, 11] measurements provide some
insight over the whole integrated surface profile, but cannot specify any finer details. X-
ray photoemission [12] and resonant ultraviolet SHG [7] measurements provide information
about the concentration profile near the topmost surface, but unlike SFG, provide no insight
into the structure or bonding environment at the surface.

Therefore, this study provides SFG measurements of the surface of water, including both
neat water and water with a variety of dissolved ions, focusing particularly on ionic species
that are important in atmospheric chemistry: Cations Na+, K+, NH+

4 , and anions Cl−, NO−3 ,
SO2−

4 .

1.2 SFG details

1.2.1 SFG as a surface probe

In a centrosymmetric medium, such as bulk water, SFG is symmetry-forbidden in the electric-
dipole approximation [13]. In particular, if the medium is centrosymmetric, then symmetry
demands that

~PSF =
↔
χ

(2)
: ~E1

~E2 =⇒ (−~PSF) =
↔
χ

(2)
: (− ~E1)(− ~E2)

from which it follows that
↔
χ

(2)
= 0. At a surface or interface, however, the SFG signal is

is not symmetry forbidden, due to structural asymmetry at the surface—for example, there
may be more water molecules pointing up than down at the surface. One cause of structural
asymmetry is the exigencies of how the hydrogen-bonding network terminates at the surface.
Another possible cause of structural asymmetry, key to this study, is that an ionic double-
layer can create a static electric field at the surface, which will reorient a fraction of the
water molecules there.

An SFG surface response can also come from field gradients: As the index of refraction
and local field factor change across the interface, the electric field changes rapidly over an

2



atomic scale, which may induce SFG in surface molecules [14]. However, for the purpose of
this study, this aspect of the signal can be safely neglected, because the analysis is based on
the difference between pure water and relatively-dilute salt solutions (ion concentration of a
few percent), and these should have a similar field-gradient surface response.

At higher orders of perturbation theory, SFG is not forbidden in the bulk—an issue
discussed further in Chapter 2. However, again, for the purpose of this study, the possibility
of a bulk signal can be safely neglected, because it should be similar with or without salt in
the concentrations used.

1.2.2 Phase matching

Sample

w
1

w
2 "R

efle
cte

d" S
FG

"Transmitted" SFG

Figure 1.2 – The two directions in which coherent SFG is emitted.

For a planar interface, there are two phase-matched directions in which relatively strong,
coherent SFG is emitted, shown in Fig. 1.2. If the interface is at z = 0, then coherent
emission requires k1x + k2x = kSF,x and k1y + k2y = kSF,y. These constraints, along with the

fact that |~kSF| is fixed by the frequency, mean that there are exactly two allowed ~kSF values
for coherent light: The “reflected” and “transmitted” directions as shown in Fig. 1.2. In this
study, only the reflected SFG was measured, which was sufficient for the purpose at hand.
(The transmitted direction gives some complementary information [15], see also Chapter 2.)

1.2.3 Theory of SFVS

The study described herein uses a specific type of measurement called Infrared-Visible Sum-
Frequency Vibrational Spectroscopy (“SFVS”) (Fig. 1.3). In this setup, one of the incoming
beams (ω1) is an infrared frequency which is resonant (or nearly-resonant) with an OH
vibrational mode of H2O. The other incoming beam (ω2) is visible and off-resonance, as is
the sum-frequency ωSF. The measurement involves sweeping the frequency ω1 across the
resonance, hence performing vibrational spectroscopy. This can yield valuable information
about the intermolecular bonding and environment.

To understand the type of information gleaned from SFVS, we review the basic theory
behind it.
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w1

w2 wSF

g

v

Figure 1.3 – Relation of SFG frequencies to molecular energy levels (the ground state g and
the first excited vibrational state v), in an SFVS measurement.

When a molecule is placed in oscillating electric fields ~E1e
−iω1t and ~E2e

−iω2t, its nonlinear
response creates an oscillating dipole moment at ωSF = ω1+ω2. The strength of this response

is characterized by the molecule’s hyperpolarizability tensor,
↔
α

(2)
:

~p(2)(ωSF) =
↔
α

(2)
: ~E1

~E2

Using perturbation theory in the electric-dipole approximation [16],

↔
α

(2)
(ω1) =

↔
α

(2),NR
+

↔

A

ω1 − ωvg + iΓvg

Aj`m ∝ 〈g|α(1)
j` |v〉 〈v|pm|g〉

where “NR” stands for nonresonant contributions,
↔
α

(1)
is ordinary Raman polarizability, ~p

is the electric dipole moment operator, g and v are the ground and first-excited vibrational
state (Fig. 1.3), ωvg and Γvg are respectively the vibrational frequency and damping coeffi-
cient, j, `,m are Cartesian indices, and all expressions are in laboratory coordinates. This
expression clarifies several points:

• For a vibration to have an SFG signal, it must be both Raman and IR active. Therefore,
for example, an individual water molecule can have an SFG response, but an individual
centrosymmetric molecule cannot, as its Raman-active and IR-active modes are mutu-
ally exclusive. This restriction is just as expected in the electric dipole approximation,
from the symmetry argument above.

• If a molecule’s orientation is flipped, the Raman polarizability
↔
α

(1)
is unchanged, but

the transition dipole moment operator ~p changes sign, and therefore so does
↔

A. Con-

sequently, the sign of
↔

A directly reflects the absolute orientations of molecules. This is
a crucial point for our data interpretation (see Sec. 1.2.5).

• In a bulk system of randomly-oriented asymmetric molecules, such as bulk water, each
individual molecule emits SFG, but the signals of molecules with opposite orientations
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cancel each other out. So there is no net signal, again consistent with the expectation
from symmetry.

For a bulk molecular system, each molecule is in a slightly different environment, and there-
fore has a slightly different vibrational frequency ωvg. The expected aggregate SFG signal
is:

↔
χ

(2)
(ω1) =

↔
χ

(2)

NR +

∫ ↔

A(ωvg)

ω1 − ωvg + iΓ(ωvg)
ρ(ωvg)dωvg (1.2)

where ρ(ωvg)dωvg is the density of molecules with a particular vibrational frequency ωvg, and
↔

A(ωvg) is the average value for this group of molecules, which is zero if the molecules are
pointing up and down equally, or has one sign or the other depending on which orientation
dominates.

1.2.4 Motivation for phase-sensitive SFVS

After measuring
↔
χ

(2)
, one wants to analyze Eq. (1.2) to learn about A(ωvg) and ρ(ωvg), i.e.

what molecular environments are present and how the molecules in each environment are

oriented. However, if the absolute value |↔χ(2)
(ω1)|2 is known, but the complex phase is not,

this analysis is quite difficult and error-prone [17]. In fact, even with no noise and just a few
discrete lines, it is mathematically impossible to get a unique fit to Eq. (1.2) [18].

However, with the full complex function
↔
χ

(2)
(ω1) (both absolute value and phase), there

is a simple and unambiguous approach to data analysis. In the case of the water surface,
we can take Γ→ 0 in Eq. (1.2), because we expect inhomogeneous broadening to dominate
over homogeneous. Therefore, taking the imaginary part of both sides and applying the
Sokhotski-Plemelj theorem, Eq. (1.2) becomes:

Im
↔
χ

(2)
(ω1) = −π

↔

A(ω1)ρ(ω1). (1.3)

Thus, by checking the sign of Im
↔
χ

(2)
(ω1), one can immediately see whether the group of

molecules with vibration frequency equal to ω1 tends to be oriented disproportionately to-
wards or away from the surface. This will be the primary mode of data analysis as described
in the following section.

1.2.5 Data interpretation for water solutions

A typical SFG intensity spectrum of water in the OH stretch region is shown in Fig. 1.4.
The sharp peak on the right is called the “dangling OH” peak, which corresponds to OH
bonds at the topmost surface with the hydrogen pointing towards vapor [17]. This study
focuses on the broad, lower-energy signal associated with hydrogen-bonded OH’s.
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Figure 1.4 – Measured SFG intensity from neat water in the OH stretch region (smoothed
and corrected for Fresnel factors.

The data analysis method for this work is summarized in Fig. 1.5. The relative surface
affinity of the anion and cation will determine the sign of the surface electric field from the
ionic double-layer. This electric field, in turn, will tend to reorient water molecules. From

Eq. (1.3), Im
↔
χ

(2)
in the bonded OH region will increase if the double-layer electric field

tends to point towards the air, and will decrease if the double-layer electric field points away

from the air. (We are assuming here, as usual, that Im
↔
χ

(2)
> 0 for the orientation where

O→H points towards the air, as it does for the dangling OH peak. Strictly speaking, this

assumption may or may not be correct, but it does not matter. In fact,
↔
χ

(2)
is measured with

a sign ambiguity (see Sec. 1.3.4). The relationship between signal and absolute orientation
is established instead by the dangling OH peak.)

+ + + +

- - - -

H    H
O

+ + + +

- - - -

H    H
O

Figure 1.5 – Relation between surface affinity and SFG signal. Left: If the cation has
higher surface affinity than the anion, then the electric field from this double-layer will tend
to reorient water molecules into the orientation shown. Right: If the anion has higher surface
affinity, the preferred water molecule orientation will be reversed. The left and right case

can be distinguished by the sign of Im
↔
χ

(2)
(Eq. (1.3)).

Therefore, by using different pairs of cations and anions, one can determine in each case
whether the anion or cation is, on average, closer to the surface.

6



1.2.6 Fresnel factors and light polarizations

An SFG measurement does not capture
↔
χ

(2)
directly, but rather a related quantity called

↔
χ

(2)

eff , the effective surface susceptibility, which in this context differs from
↔
χ

(2)
solely due to

the Fresnel factors that relate the fields within the high-index water to the corresponding
fields in the adjacent air. The basic formula is [19]:

~EB(ω) =
↔

L(ω) · ~EA(ω) (1.4)

where
↔

L is the tensorial Fresnel factor, ~EA is the electric field on the air side of the interface,
and ~EB is the electric field on the water side. If the interface is normal to the z direction,
and the light is incident in the x − z plane, then the tensorial Fresnel factor is diagonal in
the x− y − z basis, and its nonzero components are [19]:

LXX(ω) =
2εA(ω)kBz(ω)

εB(ω)kAz(ω) + εA(ω)kBz(ω)

LY Y (ω) =
2kAz(ω)

kAz(ω) + kBz(ω)
(1.5)

LZZ(ω) =
2εA(ω)εB(ω)kAz(ω)

εB(ω)kAz(ω) + εA(ω)kBz(ω)
· 1

ε′(ω)

Here, ε′ is the dielectric constant in the interfacial region between A and B (the top few
monolayers), which is poorly defined, since dielectric properties are by definition averaged
over a mesoscopic region. Nevertheless, a careful analysis relates the appropriate value of ε′ to
the local field factors, which can be roughly estimated in a simple slab model to give [19,20]:

ε′ =
εB(εB + 5)

4εB + 2
. (1.6)

Next, plugging in Eq. (1.4),

χ
(2)
eff = [

↔

L(ωSF) · êSF] · ↔χ(2)
: [

↔

L(ω1) · ê1][
↔

L(ω2) · ê2]

where êi is the polarization vector of the corresponding wave on the air side.

All measurements in this study used “SSP” polarization. The designation “SSP” refers,
respectively, to the light polarizations at ωSF, ω2, and ω1 (infrared). SSP polarization is par-
ticularly useful for SFVS surface studies, although other polarizations give complementary
information [15]. In the SSP polarization:

χ
(2)
eff,ssp ∝ χ(2)

yyzLY Y (ωSF)LY Y (ω2)LZZ(ω1)

(using the fact that χ
(2)
yyx = 0 by symmetry.)

For this experiment, it is worth noting that LZZ(ω1) is complex, as a result of water’s
complex dielectric constant at the OH stretch resonance. Therefore, the measured complex
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phase for χ
(2)
eff is different than the inferred complex phase for χ(2). This phase difference,

however, is quite small—3.5◦ or less (Fig. 1.6)—so it does not noticeably affect the data,
although it is taken into account anyway. (However, if ε′ = εB were used instead of Eq. (1.6),
the phase correction would be as large as 20◦, noticeably altering the data.)
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3

4

 

 

arg
(χ(2)

) - 
arg

(χ(2) eff
)  (

de
gre
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)

I R  f r e q  ( c m - 1 )
Figure 1.6 – Phase-shift due to complex Fresnel factors.

The absolute value of LZZ(ω1) varies slightly with frequency, which is taken into account
in the results. The LY Y factors are ignored altogether, being both real and frequency-

independent. (The measurement of
↔
χ

(2)
is in arbitrary units anyway.)

1.3 Experimental methods

1.3.1 Generating the beams

Q-switched

Nd:YAG

355nm OPG/OPA

≈450nm

≈1.6μm

DFG

SHG

≈3μm

532nm

1064nm
100μJ

500μJ

Figure 1.7 – Schematic of experimental setup for generating SFG input beams (ω1 and ω2).
See text for description.

The two input beams for SFG are generated by a multi-step process, summarized in
Fig. 1.7.

First, a commercial Q-switched Nd:YAG laser (EKSPLA Corporation) generates light
with wavelength 1064nm, pulse length 20ps, and repetition 10Hz. Nonlinear crystals within
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the laser convert some of the power into the third harmonic (355nm). The pulse power
exiting the laser is 40mJ in the fundamental and 6mJ in the third harmonic.

Part of the 1064nm beam is directed into an SHG crystal. The resulting 532nm beam
serves as the ω2 input for SFG, with power about 500µJ per pulse.

Meanwhile, the 355nm beam is directed into an optical parametric generation and am-
plification (OPG/OPA) system [21]. By tuning the angles of the nonlinear crystals and of
the bandwidth-narrowing grating, the signal and idler frequencies from the OPG/OPA can
be varied. Afterwards, the pump beam and signal beam are filtered out, while the idler is
combined with part of the 1064nm beam and directed into a DFG crystal (LiNbO3). The
resulting mid-infrared beam is separated with a germanium Brewster plate, and used as the
ω1 input for SFG, with power about 100µJ per pulse.

A delay line in the 1064nm beam ensures that it arrives at the DFG crystal simultaneously
with the idler. Likewise, a delay line on the 532nm ω2 beam ensures that it arrives at the
sample simultaneously with the ω1 beam.

Sample

w
1w

2 w S
F

Filters

w S
F
PM
T

Figure 1.8 – Collinear geometry for SFG.

At the SFG setup, the ω1 and ω2 beams are separately focused to a point near the sample,
with the focal length and focal point chosen to balance the desire for high signal strength with
the need to avoid damaging the sample—or in the case of water, local boiling that would
agitate the smooth surface. At the sample surface, the beam diameters are 300–600µm.
Before reaching the surface, however, the beams are combined via a silicon Brewster plate
into a collinear arrangement (see Fig. 1.8), with angle of incidence ≈ 45◦. This collinear
arrangement is somewhat atypical for SFG, since it makes it more of a challenge to filter out
the ω1 and ω2 beams from the 1015-times-weaker ωSF beam. Nevertheless, the collinear setup
is used, because of the significant advantages for phase-sensitive measurements described
below.

The “filters” shown in Fig. 1.8 consist of a series of glass and holographic filters, then a
monochromator, then a photomultiplier tube (PMT) with low responsivity below ωSF, and
finally a boxcar integrator synchronized with the laser. The monochromator is particularly
useful for filtering broadband fluorescence and scattering, while the boxcar is particularly
important for eliminating room light. The effectiveness of this filtering system can be easily
tested by separately blocking either ω1 or ω2, which reveals the background by eliminating
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the ωSF signal. We found this way that we were, in fact, successful in achieving a very low
background, typically one photon every fifty pulses with the room light on, or one photon
every several hundred pulses with the room light off. This level was 10–100 times weaker than
the water ωSF signal; nevertheless, to be safe, all water measurements were performed with
the room light off. The quartz reference measurements were run at a much lower sensitivity,
due to the stronger signal, and therefore the room lights could be left on.

Changing wavelength for SFG requires simultaneously rotating the crystals and grating
in the OPG/OPA, the DFG crystal, and the monochromator knob, as well as a compensator
after the DFG crystal to keep the beam location fixed. All this is achieved via calibrated
computer-controlled stepper motors.

1.3.2 SFG measurement overview

The SFG intensity |↔χ(2)

eff | and phase arg(
↔
χ

(2)

eff ) were measured separately, on different days
using different (albeit nominally-identical) samples, then combined mathematically into the

complex
↔
χ

(2)
. To ensure the robustness of this procedure, many measurements were repeated,

often months apart, to ensure that the nominally-identical samples always did, in fact, have
a consistent, repeatable SFG response.

The measurements primarily covered the range 3000cm−1 ≤ ω1 ≤ 3600cm−1. This range,
called the “bonded OH” region (see Sec. 1.2.5), captures the data of interest in this study.
For the intensity measurements, some more data out to 3800cm−1 was collected to capture
the “dangling OH” peak for comparison with previous work [22–26]. The phase at these
higher frequencies was not captured, as it is not controversial (expected to be a classic sharp
resonance), and more importantly, not relevant for the study here. Finally, intensity data at
lower frequencies 2700−3000cm−1 were occasionally taken in order to check for the presence
of hydrocarbon contamination (which has a signal at the CH stretch frequency).

In the next sections we discuss, first the SFG intensity measurement procedure, then
second, the SFG phase measurement procedure.

1.3.3 SFG intensity measurement

The intensity measurement uses the setup shown schematically in Fig. 1.8. The “sample”
shown in the figure is first z-cut quartz, then the water sample, then z-cut quartz again. (The
repeated measurement of quartz allows us to check that the laser intensity has not drifted
over the course of the measurement.) For the quartz, the photomultiplier tube (PMT) was
used in linear (current) mode with 800V bias; for water, it was used in photon-counting

mode with 1200V bias. Under the reasonable assumption that
↔
χ

(2)

quartz is approximately
constant over the wavelength range of interest (it is an off-resonance response), the value

of |↔χ(2)

water sample|2 is simply calculated as the ratio of the water sample measurement to the
quartz sample measurement.
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In photon-counting mode, it is always impossible to distinguish the arrival of one photon in
a pulse from the arrival of two or more photons in a pulse (except insofar as the threshold for
counting is not set properly). Therefore the standard correction is made based on Poissonian
statistics: (

Average number of

photons per pulse

)
= − ln

(
1−

(
Fraction of pulses with

at least one photon

))
where “ln” is natural logarithm.

For each measurement, many wavelength sweeps are performed. The sweeps are super-
imposed to visually inspect for signs of laser instability or bad datapoints, then averaged
for the final answer. Both the water and quartz curves are smoothed via a five-point rolling
average, then their ratio is computed, and finally the Fresnel factors (Sec. 1.2.6) are divided
out to get (|χ(2)|2) for the water sample.

One or two specific data-points, usually 3530cm−1 and/or 3540cm−1, were consistently
problematic outliers and had to be discarded. This artifact was discovered to arise from
unintentional four-wave mixing at the sample, from light at frequency (ωidler +ω2−ω1). This
should not occur because, first, the idler should have been blocked by the germanium plate
from reaching the sample, and second, the four-wave-mixing light has the wrong wavelength
to pass through the monochromator (except at ω1 = 3133cm−1 when, by an unlucky coinci-
dence, ωidler +ω2−ω1 = ωSF). However, around 3530cm−1, neither of these mechanisms was
sufficiently effective to block the four-wave-mixing signal. (The monochromator slit had to
be rather wide for technical reasons.) The discarding of these one or two data-points posed
no problem for graphs or data interpretation, and other points were confirmed to have no
such contamination.

1.3.4 SFG phase measurement

Sample

w
1w

2
w
SF

Filters

w S
F
PM
T

 

y-
qu
ar
tz

Compensator

Figure 1.9 – Phase measurement setup.

The phase of
↔
χ

(2)
was measured by an interference method [27], with schematic shown in

Fig. 1.9.
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In this method, the SFG signal from a y-cut quartz reference plate is interfered with the
SFG signal from the sample, which is either the real sample (water) or a reference sample
(quartz). A glass compensator plate is placed between the two SFG sources. As it rotates,
it shifts the relative phases of the two SFG sources, creating interference fringes. Comparing
the interference fringe offset of the real sample (water) to the reference sample (quartz)

enables the phase of
↔
χ

(2)

water sample to be measured. In the following paragraphs we describe
this in more detail.

The crucial quantity in this measurement is the combined phase difference between the
three waves: φSF − φ1 − φ2. At a given location, the quantity φSF − φ1 − φ2 is fixed in
time, due to the relation ωSF − ω1 − ω2 = 0. By similar logic, if the three waves are plane-
waves traveling in the same direction through vacuum, the quantity φSF − φ1 − φ2 is the
same everywhere along the path. Finally, by Eq. (1.1), the quantity φSF − φ1 − φ2 in an

SFG-active sample equals the phase arg(
↔
χ

(2)
):

arg(
↔
χ

(2)

eff ) = arg(~P )− arg( ~E1)− arg( ~E2) = φSF − φ1 − φ2.

By this principle, immediately after the quartz reference plate, the three waves—ω1, ω2,
and the newly-generated ωSF—have a fixed phase relation:

(φSF − φ1 − φ2)after y-quartz = constant.

The constant is solely a property of the y-quartz, and although its specific value is known in
principle (either 0◦ or 180◦ depending on orientation), it is irrelevant to the measurement.

After the y-quartz, the three waves travel collinearly through air for several centimeters.
As they do, their relative phase (φSF−φ1−φ2) changes very gradually, due to the dispersion
of air [28,29]:

∆(φSF − φ1 − φ2)

distance traveled through air
= (nSF,airωSF − n1,airω1 − n2,airω2)/c .

360◦

10cm
. (1.7)

Next, the three waves pass through the glass compensator plate, which is oriented at an
angle θ from normal. As shown in Fig. 1.10, we can define ∆X as the lateral displacement of
the beam, ∆Y as the other orthogonal component of the distance traveled within the plate,
d as the plate thickness, and α as the angle between the light’s propagation direction within
the plate and the plate’s normal. From straightforward geometry and trigonometry, one can
calculate:

∆X = d (sin θ − cos θ tanα)

∆Y = d (cos θ + sin θ tanα)

The phase shift, in radians, due of the plate, compared to propagating the same orthogonal
distance in vacuum, is:

∆φ =
2π

λvac

(
n
√

(∆X)2 + (∆Y )2 −∆Y
)

(1.8)
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ΔY
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Figure 1.10 – Compensator plate (gray box) with light passing through (heavy line).

Doing a Taylor-expansion for small angles θ, substituting Snell’s law, gives:

∆φ ≈ 2πd

λvac

[
(n− 1) +

n− 1

2n
θ2

]
(1.9)

The quantity of interest is the change in relative phase:

∆(φSF − φ1 − φ2) ≈ (constant)− πd
(

1

λSF,vacnSF

− 1

λ1,vacn1

− 1

λ2,vacn2

)
θ2

As seen below, the θ-dependence in this formula will be key to teasing out the sample’s SFG
phase.

As an example, we plug into this formula some typical refractive indices for a 1.5mm-thick
fused silica plate (n1 ≈ 1.42, n2 ≈ nSF ≈ 1.46). This should be similar to the experimental
parameters. The calculation result is:

∆(φSF − φ1 − φ2)1.5mm SiO2 ≈ (−36.7× 360◦) + 0.96× θ2

(in degrees). Therefore, when the plate is rotated ≈ 20◦ off normal, the relative phases
should shift by a full cycle, and by ≈ 30◦, it should shift by a second cycle. This rough guess
is remarkably consistent with the measured curves (Fig. 1.11); the measured value was 1.06
instead of 0.96. We also confirmed in this example that the second-order Taylor series (Eq.
(1.9)) is indeed an excellent approximation for calculating ∆(φSF − φ1 − φ2) with |θ| < 30◦.
We also checked for this example whether rotating the plate might harm the beam overlap
by shifting the different beams by different amounts ∆X. In fact, the relative shift is only
about 15 µm at 30◦, far less than the beam diameters, so this should not be a problem.

Finally, after exiting the compensator plate, the three beams travel together collinearly
through air and arrive at the sample surface, now satisfying

φSF − φ1 − φ2 = C1 + C2θ
2 (1.10)
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where C1 and C2 are constants. The measurement does not require that C1 and C2 be
constant with respect to wavelength, only that they be the same (at a given wavelength)
between consecutive measurements of the water sample and the quartz reference sample.

After the sample, there are two SF signals: The reflection of the y-quartz signal off the
sample surface, with phase φSF,y-quartz = φ1 + φ2 + C ′1 + C2θ

2 (where C ′1 = C1 + π, due
to the phase shift upon reflection); and the new SF signal from the sample, with phase

φSF,sample = φ1 + φ2 + arg(
↔
χ

(2)

eff ). The measured intensity of light is:

Imeasured =
∣∣ASF,y-quartze

iφSF,y-quartz + ASF,samplee
iφSF,sample

∣∣2 (1.11)

= K1 +K2 cos(φSF,y-quartz − φSF,sample) (1.12)

= K1 +K2 cos(C ′1 + C2θ
2 − arg(

↔
χ

(2)

eff )) (1.13)

where K1, K2 are constants independent of θ.
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Figure 1.11 – Example of SFG signal as a function of compensator angle (left) and com-
pensator angle squared (right). Points represent measurement data, and dashed line is the
best fit.

Therefore, holding wavelength constant and varying θ, there should be interference fringes.
An example is shown in Fig. 1.11. We do a least-squares fitting to the pattern and extract the

phase at θ = 0, which corresponds to (C ′1−arg(
↔
χ

(2)

eff )). C ′1 is separately measured by doing this

procedure with the quartz reference sample, for which it is known that arg(
↔
χ

(2)

eff ) = ±π/2.

(Quartz has an off-resonant, therefore real, bulk SFG susceptibility
↔
χ

(2)

B . This creates an

equivalent surface susceptibility of
↔
χ

(2)

B /(i∆k), which is purely imaginary.)

Finally, since C ′1 is known, and (C ′1−arg(
↔
χ

(2)

eff )) is measured for the water sample, arg(
↔
χ

(2)

eff )
can be inferred.

To be more precise, arg(
↔
χ

(2)

eff ) can be determined up to a possible offset of π. This offset

comes from both uncertainty in the sign of C2, and uncertainty in the sign of arg(
↔
χ

(2)

eff,z-quartz) =
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±π/2. Both could be resolved after some effort, but there is no need: A glance at the data
makes the appropriate π phase-offset very clear.

Note that it is crucial that C ′1 remain constant for the duration of the measurements
of both the water sample and the quartz reference sample. This requirement is the key
motivator of the collinear geometry: Even if the water level lowers slightly as it evaporates,
or if the quartz and water are not at exactly the same height, it will have negligible effect on
C ′1, because of Eq. (1.7). (Any unintentional changes in the path length will be much less
than 10cm!)

Another aspect of this measurement is the ideal orientation of the y-cut quartz plate.
The symmetry of y-cut quartz means that, as the plate is rotated about its normal axis, its
SFG signal oscillates between zero and very large. For this measurement, it was rotated to
get the optimal visibility of the interference fringes, for both the weak water sample and the
strong quartz reference sample. As in any interference measurement, if the intensity is too
high, the fringes become drowned out by noise arising from laser fluctuations; if the intensity
is too low, the fringes become drowned out by shot noise. After an appropriate orientation
was found, it was kept fixed for the duration of all experiments.

1.3.5 Chemical

In a surface measurement, it is particularly important to avoid contamination, as even an
extremely dilute impurity may become concentrated at the surface.

All glassware was cleaned with soap, acetone, and isopropanol, then soaked for at least a
few days in 98% H2SO4 mixed with “Nochromix” (a proprietary glass cleaning agent). When
removed, it was thoroughly rinsed in deionized water and blown dry with pure nitrogen gas
passed through a filter.

Deionized water with resistivity 18.3 MΩ·cm was drawn from an EASYpure purifier sys-
tem. Salts were purchased from Sigma-Aldrich; the list below shows the molar concentration
into which they were mixed and their purity.

• 2M NaCl: 99.999% purity (trace metals basis)

• 2M KCl: 99.999% purity (trace metals basis)

• 2M NaNO3: 99.995% purity (trace metals basis)

• 2M NH4Cl: 99.998% purity (trace metals basis)

• 1M Na2SO4: 99.99% purity (trace metals basis)

• 1M (NH4)2SO4: 99.999% purity (trace metals basis)

Prior to use, the samples of NaCl, KCl, and Na2SO4 were baked at 500◦C to remove any
residual organic contamination, while the ammonium salts (unstable at that temperature)
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were treated in UV-ozone for 30–90 minutes for the same reason. The salts were mixed
with water at the appropriate concentration in a glass petri dish. After it dissolved, it was
transfered through a syringe filter into a second petri dish, in order to remove additional
contaminant particles.

After the glass petri dish was placed into the light path, glass slides were positioned
to mostly enclose the liquid, in order to minimize evaporation and contamination over the
course of the ten-hours-or-so measurement. The light did not pass through the glass slides,
but rather passed through a narrow slit between the slides.

1.4 Results and interpretations

Measurement results were taken over the course of six months, in the middle of which
the entire laser system was thoroughly realigned. Therefore, it was encouraging that all
results were consistently repeatable within the experimental error margins. A representative

example is Fig. 1.12, three independent measurements of arg(
↔
χ

(2)

eff ) for neat water. These
results are consistent with each other, and also with measurements by colleagues in prior
years.
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Figure 1.12 – Phase measurements showed good repeatability, as shown by these three
separate phase measurements of neat water. These results were also consistent with mea-
surements done in the lab in previous years (not shown). Error bars are uncertainty inferred
from the least-squares fitting procedure.

All of the intensity measurements |χ(2)|2 are shown in Fig. 1.13. All the raw phase

measurements arg(χ
(2)
eff ) are shown in Fig. 1.14. Combining these gives the Im(χ

(2)
eff ), Fig. 1.15.

(NaI data from a previous study [30] is also plotted for comparison.)
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Figure 1.13 – All measured SFG intensities. Fresnel factor is already divided out.
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Figure 1.14 – All measured SFG phases.
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Figure 1.15 – Top: Imaginary part of SFG susceptibility. Bottom: Difference between each
solution and neat water.
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We interpret these data using the framework described in Sec. 1.2.5, where a change in
Imχ(2) is assumed to be caused by the reorientation of water molecules due to the electric
field from an ionic double-layer. However, before using this assumption, other possibilities
should be ruled out. First, the ionic species might directly contribute to the Imχ(2) signal;
however, this cannot occur because their vibrational modes are far off-resonance in this part
of the spectrum. A possible exception is the umbrella-bending-rocking combination mode
of NH4 at 3060cm−1 [31], which does not show clearly in the data, but cannot be ruled
out either. Second, the ionic species may physically get in the way in the networking and
bonding of water molecules at the topmost surface. However, this is unlikely to be a large
effect because, first, the dangling-OH peak is not strongly effected by any of the solutes, and
second, at the concentrations used, even the most surface-enhanced species measured, I−,
should have a surface concentration of only a few percent [32], much too small to account
for the measured change in SFG signal. Therefore, we can confidently use the analysis
framework described in Sec. 1.2.5.

For example, Imχ(2) is more positive with dissolved NaNO3 than with neat water, and
more negative with dissolved Na2SO4 than with neat water. Therefore, we infer that NO−3
tends to have higher surface affinity than Na+, which in turn tends to have higher surface
affinity than SO2−

4 . Continuing in this manner, we get a rank ordering of surface affinity,
from closest-to-the-surface to farthest-to-the-surface:

I− > NO−3 & NH+
4 > Cl− & K+ & Na+ > SO2−

4 (1.14)

The anion ordering in (1.14) agrees with the Hofmeister series, with later ions in the series
being closer to the surface [33]. The cations were generally more similar to each other, but
their trend appears reversed from the Hofmeister-series expectation. We emphasize that
the ordering (1.14) conveys the average behavior, not every detailed aspect of the depth-
dependent profile. Moreover, this type of analysis neglects the possibility of specific anion-
cation interactions. In fact, there is some suggestion of these interactions: (NH4)2SO4 is
almost indistinguishable from (Na)2SO4, whereas NH4Cl is clearly distinguished from NaCl.
Nevertheless, we expect that the basic conclusions are robust. Next, we go through these
species one-by-one to discuss the data in more detail, and compare with previous results and
expectations.

The spectra of NaCl, KCl, and water are all quite similar. Previous measurements [22–26]
could not confidently detect a difference at all, hence concluding that Na+, K+, and Cl−

have a similar propensity to accumulate at the topmost surface of water, and have similar
concentration profiles as a function of depth. In this more refined Imχ(2) measurement,
however, it is possible to detect a small increase in Imχ(2) resulting from the presence of
NaCl or KCl. This is consistent with the molecular-dynamics (MD) simulation expectation
that Na+ and K+ are depleted at the interface, while Cl− is neither depleted nor enhanced.

Next we consider the SO2−
4 ion. Simulations have suggested that the ion should be strongly

repelled from the surface, because its doubled charge gives it a quadrupled electric repulsion
from the interface in the Onsager model [22]. Previous non-phase-resolved SFG measure-
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ments have seemed to support this [25]. Our measurements confirm this more definitively:
We found SO2−

4 to have the strongest surface repulsion of any species measured.

Next we consider the NH+
4 ion, by comparing NH4Cl to NaCl, and also by comparing

(NH4)2SO4 and Na2SO4. Consistent with expectations from Raman and IR intensities [22],
as well as mode symmetry considerations, we see no clear evidence of a direct SFG signal
from NH+

4 ion vibrational modes, although we cannot rule out a small contribution from
the umbrella-bending-rocking combination mode at 3060cm−1 [22]. Therefore we attribute
the signal, as usual, to the OH bonds in water molecules reorienting due to ionic double-
layer fields. Below 3250cm−1, there is no experimentally-resolved difference between NH4Cl
and NaCl, or between (NH4)2SO4 and Na2SO4. Between 3250–3500cm−1, however, the
NH4Cl solution has significantly more negative Imχ(2) than NaCl. The sign of this change
corresponds to NH+

4 being on average closer to the surface than Na+. This trend matches
expectations from MD [22], but while MD finds a Cl− depth profile more similar to NH+

4 than
Na+, the experimental results are the opposite [1,22]. Compared with the chloride salts, the
sulfate salts (NH4)2SO4 and Na2SO4 show a more similar spectrum, with the ammonium salt
spectrum only slightly more negative than the sodium one. This may be an anion-cation
interaction, where perhaps the attraction between the deeper sulfate anion and shallower
cation limits the separation between the two. Such anion-cation interactions are seen in MD
simulations of these solutions [22], but not in macroscopic surface-tension measurements [9].

Finally, we consider the NO−3 ion. From the NaNO3 measurement, the NO−3 ions appear
closer to the surface than the Na+ counter-ions, but not as close as I−. This result is
a helpful contribution to the literature, as the surface affinity of nitrate has been quite
controversial. Earlier MD simulations predicted a surface excess of NO−3 [34], but more
recent results, with a different model for polarizability, predicted a surface repulsion [31,
35, 36]. Experimental results have also been somewhat inconsistent. X-ray photoemission
spectroscopy found not much surface excess of NO−3 [12] in a 3M NaNO3 solution, while
UV-SHG found that the surface excess of NO−3 in a 2M NaNO3 solution was appreciable but
not as strong as the surface excess of I− [33] (consistent with the results reported here). On
the other hand, macroscopic surface-tension results suggest that NO−3 had neither a surface
excess nor deficit [9].

In summary, we have measured the complex χ(2) spectrum of water with various salts,
and shown that Imχ(2) gives valuable semi-quantitative information about the surface fields
and ionic surface affinities. This data can help refine models of atmospheric chemistry, and
constrain and validate molecular simulations of the surfaces. In the next chapter, we will
discuss how SFG predictions are extracted from these molecular simulations, an area which
is crucial for enabling better simulation-based interpretations of experimental spectra, and at
the same time, better experiment-based validation of simulation models, leading ultimately
to a better understanding of the water surface.
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2 Addressing ambiguities in sum-frequency-generation

predictions from molecular simulations

2.1 Introduction

2.1.1 Background

As described in Chapter 1, sum-frequency generation (SFG), including its special case of
second-harmonic generation (SHG), has been established as a powerful technique for study-
ing surfaces and interfaces because of its ability to provide surface-specific electronic and
vibrational spectra [1,2]. The technique has already been widely used to probe systems with
fundamental importance in physics, chemistry, biology, and geology. In some cases, however,
interpretation of the spectra can be difficult. This is particularly true for surface vibrational
spectra of liquids, such as water, where the diversity of molecular arrangements leads to a
broad, but featured, spectrum (Fig. 1.4). To understand such a spectrum and hence be able
to deduce structural information about the surface or interface, we would need a theoretical
calculation that can reproduce the experimental spectrum. Agreement between theory and
experiment would lend weight to calculations which can then be further extended to predict
new properties or phenomena about the surface. So far, molecular simulations have been
the only theoretical technique used to calculate SF vibrational spectra of liquid interfaces,
in particular the water interfaces because of their importance. However, their success in re-
producing experimental spectra has been limited. Even in the case of the neat water/vapor
interface, the calculated spectrum in the OH stretch range often does not fully agree with
the experimental one, especially on the low-frequency side [3]. (However, more recent studies
claim to have reconciled the low-frequency discrepancies [4, 5].) Different groups have also
reported somewhat different calculated spectra [3].

Recently, Noah-Vanhoucke et al. found that different seemingly-valid ways to perform
the calculation could yield very different spectra [6]. Therefore it is appropriate to carefully
reexamine the approach and assumptions used in the simulations. In this article, we show
existing deficiencies in current computational approaches and suggest ways to minimize
them. We shall focus on the neat water/vapor interface as a representative example, but our
discussion is generally applicable to all interfaces.

Let us first briefly review the basic theory of reflected SFG from an interface (with more
details presented in Sec. 2.3). Consider two input beams at frequencies ω1 and ω2 overlapping
on the interface that generates a SF output at frequency ωSF ≡ ω1 + ω2 in the reflected
direction (Fig. 2.1). The SF signal can be written as [1]:

S(êSF, ê1, ê2) ∝
∣∣∣êSF ·

↔
χ

(2)

S,eff: ê1ê2

∣∣∣2 , ↔
χ

(2)

S,eff ≡
↔
χ

(2)

S +

↔
χ

(2)

B

−i
∣∣∣∆~k∣∣∣ (2.1)

where
↔
χ

(2)

S and
↔
χ

(2)

B are defined as the second-order surface and bulk nonlinear susceptibil-
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Figure 2.1 – A schematic of the water/vapor interface probed by an SFG experiment.
The water is depicted as infinitely deep, which corresponds to an experiment where light
attenuation or spatial filtering suppresses the signal of the opposite (bottom) interface.

ities, respectively, êi is the polarization unit vector of the ith field, ∆~k ≡ ~kSF − ~k1 − ~k2 is

the wave vector mismatch between input and output beams, and
↔
χ

(2)

S,eff is the net “effective”
surface susceptibility (note that it is defined differently than in Chapter 1). The boundary
between “surface” and “bulk” in this context is wherever the perturbing effects of the surface
can no longer be felt (Fig. 2.1), for example a few monolayers for neat water, or a screening

length for ionic solutions. In centrosymmetric media,
↔
χ

(2)

B vanishes under the electric-dipole
approximation, and is therefore dominated by the electric-quadrupole and magnetic-dipole

response. On the other hand,
↔
χ

(2)

S is dominated by the electric-dipole contribution because of
the broken inversion symmetry at the interface. Its resonant spectrum, especially the vibra-
tional one, can provide information about the interfacial structure as well as the orientation
of the interfacial molecules. In some cases, the bulk term may be negligible compared with
the surface term. In general, however, this is not necessarily true [1], and there is no simple
theory that can be used to predict whether the bulk term can be neglected or not for a given
interface. An order-of-magnitude estimate yields that the ratio of the bulk to the surface
term is equal to the ratio of the geometric dimension of the induced electric-quadrupole on
individual molecules to the average distance between molecules along the surface normal [7].
Thus, roughly speaking, if molecules are polar, electric-quadrupoles are well localized on the
molecules and the surface layer thickness is large compared to a chromophore, the bulk term
can be significantly smaller than the surface term. Experimentally, it is generally impossi-
ble to separate surface and bulk contributions [1, 8–10]. We usually resort to the observed
sensitivity of the spectrum to surface perturbations, for example by adsorbed molecules, to
judge whether the surface term dominates or not. (However, as discussed in Ref. [2], the
experimental separation is possible if “surface” and “bulk” are defined in a more specific
way, going beyond just Eq. (2.1).)

One contribution to the SFG signal comes from the electric-quadrupole (and magnetic-
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dipole) contribution of interfacial molecules due to the strong field gradient at the interface
between two media of different refractive indices [9]. Because this contribution is not relevant
to the study here, we shall neglect it in our discussion.

2.2 Overview of molecular simulation ambiguities (Fundamental
cause)

Consider now the molecular simulation of SFG from surfaces. Conventional approaches were
recently discovered to be ambiguous and ill-defined [6]. We will show that this problem
arises from the neglect of electric-quadrupole and magnetic-dipole contributions, i.e., the

calculations implicitly assume
↔
χ

(2)

B = 0 and
↔
χ

(2)

S,eff =
↔
χ

(2)

S . However, it is deeply problematic

to ignore
↔
χ

(2)

B , not merely because it may lead to inaccuracies, but more fundamentally

because it makes the whole calculation ill-defined. While
↔
χ

(2)

S,eff of Eq. (2.1) is well-defined,
↔
χ

(2)

S on its own and
↔
χ

(2)

B on its own are not. Therefore, any attempt to calculate
↔
χ

(2)

S while

ignoring
↔
χ

(2)

B will necessarily yield an incorrect and ambiguous result. The ambiguities in

defining
↔
χ

(2)

S and
↔
χ

(2)

B are the main subject of this paper, and in Sec. 2.3, we will explain and
quantify their origins and their consequences.

These ambiguities stem from the usual ambiguity in multipole-expansion: the electro-
magnetic response of a system can be correctly described using different forms of multi-
pole expansion [8, 11–13]. The ambiguity in multipole expansions appears in many areas of
physics—perhaps the most famous example is the fact that the dipole moment of a charged
molecule is coordinate-system-dependent. Similarly, the electric-quadrupole moment of a
polar molecule is also coordinate-system-dependent. In the case of SFG, different multipole

expansions give different weights to the dipole response
↔
χ

(2)

S versus the quadrupole response
↔
χ

(2)

B , but their combined response
↔
χ

(2)

S,eff is constant, as we shall show later.
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Figure 2.2 – An example of the well-known ambiguity in multipole expansions: (a) A
distribution of point charges in a box. (b) By grouping these charges as shown, the box
appears to have zero surface dipole and positive bulk quadrupole. (c) By grouping these
charges differently, the box now appears to have positive surface dipole and negative bulk
quadrupole. (After Ref. [8].)
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In Fig. 2.2, we illustrate this classical ambiguity in multipole expansions with a simple
example [8]: The same charge-distribution of a charge-neutral system (Fig. 2.2a) can be
described as having zero surface dipole and positive bulk quadrupole density (Fig. 2.2b),
or positive surface dipole and negative bulk quadrupole density (Fig. 2.2c). These are two
equally-valid descriptions of the same system [11–13].

(As shown in Ref. [2], if the calculation is set up in a slightly different way, there arises a
way to split the surface and bulk which is preferred as being the most natural, canonical, and
physically-motivated split. However, for the purpose of this chapter, the important point is
that the surface and bulk can be split in infinitely many different ways, all of which will add
up to the same correct total signal.)

2.2.1 Overview of molecular simulation ambiguities (Specific cause)

Surface environment

Centrosymmetric
bulk environment

Vapor

Liquid

Surface environment

Vapor

(a) (b)

z=0

O
D   

 H

O
D    H

OD
    H

(i)

(ii)

(iii)
z=zB

z=2zB

Figure 2.3 – (a) A schematic of a simulated liquid slab, with vapor on both sides. (b) The
SFG signal is typically calculated by neglecting molecules below the artificial boundary (long
dashed line). Therefore the signal from molecule (i) would be included in the total, (ii) would
not, and (iii) might or might not, depending on the molecular center used.

As explained above, from a fundamental and general perspective, previous molecular-
simulation calculations of SFG have been ambiguous because they calculated the ill-defined

quantity
↔
χ

(2)

S , rather than the unambiguous quantity
↔
χ

(2)

S,eff. Different multipole expansion

schemes (e.g., Fig. 2.2) in simulation yield different values of
↔
χ

(2)

S . Such arbitrariness is
often hidden deep within subtle details of the algorithms. We focus on the common case
of molecular simulations in a slab geometry: Here, the arbitrary part of the algorithm was
recently discovered by Noah-Vanhoucke et al. [6].

In the slab geometry, the real system is approximated by a thin slab with periodic bound-
ary conditions (Fig. 2.3a). In calculating many surface properties, such as surface tension,
contributions from the two surfaces of the slab can be added and averaged, but this step is
clearly not appropriate for SFG. The two surfaces, being opposite in orientation, will have
their electric-dipole contributions canceled by each other. Therefore, in molecular simula-
tions of SFG, it is necessary to artificially break the symmetry of the slab. Typically, an
artificial boundary surface is set up at the middle of the slab, and only electric-dipole re-
sponses of molecules between the top surface of the slab and the artificial boundary surface
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are assumed to contribute to SFG (Fig. 2.3b). This way, it was thought, the SFG signal
from just the top surface would be calculated. (The artificial boundary surface is not the
only symmetry-breaking method, but it is the simplest, and other methods [14–16] are only
superficially different as discussed further below.)

Since molecules residing around the artificial boundary surface are randomly oriented in
an isotropic bulk-like environment, the detailed implementation of the artificial separation
might seem unimportant. Unfortunately, this expectation is not true, as was highlighted
by Noah-Vanhoucke et al. [6]. The problem arises because of an ambiguity in assigning
molecules that straddle the artificial boundary to one interface or the other. In the simplest
scheme, the assignment is based on whether a predetermined point within the molecule is
above or below the artificial boundary. In using a single point to represent the molecule’s
position, one thus establishes a “molecular center”. In the case of an HOD molecule, this
point could be placed on the H, O, or D atom, or any other fixed site in the molecular frame
(Fig. 2.3b). Surprisingly, this choice can have a significant effect on the calculation. (A
superficially similar ambiguity arises in DC electrostatic potential calculations [17,18].)

3 2 0 0 3 4 0 0 3 6 0 0 3 8 0 0

0

4

8

Im
(χ(2) S

) (a
.u.

)

W a v e n u m b e r  ( c m - 1 )

 O
 H

Figure 2.4 – Slab-based MD-calculated SFG spectra of water, with oxygen (O) or hydrogen
(H) as the molecular center. Light polarization is SSP.

To illustrate the importance of this issue, we use the neat water/vapor interface as an

example. Fig. 2.4 shows two spectra of Im
↔
χ

(2)

S , calculated using two different choices of
molecular center (these simulations are discussed in more detail below). Taking the O atom
as center yields a qualitatively different result than taking instead the H as the center. It
is not clear which one (if either) gives the “correct” spectrum, i.e. the one that should be
compared with experiment. (The sharp peak at ≈ 3700cm−1 is the same in the two cases,
because it is associated with a surface mode—dangling OH vibration—that does not exist
near the artificial boundary surface [3].)

Actually, the correct spectrum must come from calculation of
↔
χ

(2)

S,eff, which includes both
↔
χ

(2)

S and
↔
χ

(2)

B . As we shall show in Sec. 2.3, both the
↔
χ

(2)

S and
↔
χ

(2)

B spectra depend on the choice

of the molecular center, but that of
↔
χ

(2)

S,eff does not. With current simulation approaches, it

can be difficult to calculate
↔
χ

(2)

B . One therefore hopes that the
↔
χ

(2)

B contribution can be
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negligible in comparison with
↔
χ

(2)

S . For this to be true, we must have a sufficiently large
↔
χ

(2)

S , such as in the cases of a surface layer of polar molecules with a significant net polar
orientation, and quite importantly, a choice of molecular center that minimizes the absolute

value of
↔
χ

(2)

B . For our example in Sec. 2.5, an SFG reflection measurement of the air/water
interface, we shall suggest that the most appropriate molecular center is at the oxygen atom
for SSP polarization (denoting S-, S-, and P-polarizations for the fields at ωSF, visible ω2, and
infrared ω1 respectively) and SPS polarization, but slightly displaced towards the hydrogen
atom for PSS polarization.

The paper is organized as follows: Sec. 2.3 describes the basics of sum-frequency genera-
tion. We first discuss SF response from individual molecules in terms of multipole expansion
and show that the division into terms of electric-dipole, electric-quadrupole, and so on is
not unique, but depends on the choice of molecular center. We then show the same am-

biguity arises in describing nonlinear susceptibilities,
↔
χ

(2)

S and
↔
χ

(2)

B , but that the effective

surface susceptibility,
↔
χ

(2)

S,eff, which takes into account both surface and bulk contributions,
is independent of the molecular center. Sec. 2.4 discusses how such ambiguities will lead to
different SF vibrational spectra calculated by molecular simulation using different choices
of molecular center. Section 2.5 presents molecular dynamics simulations of the air/water

interface as an example, and shows how the effect of
↔
χ

(2)

B can be minimized by a proper
choice of molecular center.

2.3 Basics of Sum-Frequency Generation

We describe in this section the basics of SF response of an interfacial system and show that
↔
χ

(2)

S,eff of Eq. (2.1) does not depend on the choice of molecular center, but
↔
χ

(2)

S and
↔
χ

(2)

B do. We
start from SF responses of individual molecules, and show that the sum of the electric-dipole
and electric-quadrupole responses of an individual molecule is independent of the choice of
molecular center, as any observable property should be.

2.3.1 SF response from individual molecules

The SF response of an individual molecule in the incoming fields ~E1(ω1, ~k1) and ~E2(ω2, ~k2)

can be characterized by its effective electric dipole ~p
(2)
eff , defined as the electric-dipole moment

which, by itself, would give the same electromagnetic signal in the direction ~kSF as the
combined effects of its true electric-dipole and higher-order moments together. The effective
dipole is given in the form of a multipole expansion (i.e., power series in the wavevectors ~k1,
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Figure 2.5 – The four lowest-order contributions to SFG susceptibility in the multipole
expansion. The light-matter interaction is specified by “ED” for “Electric Dipole”, or
“EQ/MD” for “Electric Quadrupole or Magnetic Dipole”.

~k2, ~kSF) as [1, 2]:

~p
(2)
eff (ωSF, ~kSF) = ~p(2)(ωSF, ~kSF)− i~kSF ·

↔
q

(2)
(ωSF, ~kSF)− c

ωSF

~kSF × ~µ(2)(ωSF, ~kSF) + · · ·

~p(2) =
↔
α
D

: ~E1
~E2 +

↔
α
Q1,EQ

: (∇ ~E1) ~E2 +
↔
α
Q2,EQ

: ~E1(∇ ~E2) +

+
↔
α
Q1,MD

: ~B1
~E2 +

↔
α
Q2,MD

: ~E1
~B2

=
↔
α
D

: ~E1
~E2 + i

↔
α
Q1

: ~E1
~E2
~k1 + i

↔
α
Q2

: ~E1
~E2
~k2 (2.2)

↔
q

(2)
=

↔
α
Qs,EQ

: ~E1
~E2

~µ(2) =
↔
α
Qs,MD

: ~E1
~E2

where ~p(2),
↔
q

(2)
, and ~µ(2) are the induced electric dipole, electric quadrupole, and magnetic

dipole at the sum frequency, respectively;
↔
α
D

,
↔
α
Qi,EQ

,
↔
α
Qi,MD

are corresponding nonlinear
electric-dipole, electric-quadrupole, and magnetic-dipole polarizabilities (see Fig. 2.5); and
↔
α
Qi

is a linear combination of
↔
α
Qi,EQ

and
↔
α
Qi,MD

(see Appendix 2.A for details). For simplic-
ity, we shall henceforth use the term “quadrupole” to refer to both the electric-quadrupole

and magnetic-dipole responses together, as described by the tensor
↔
α
Qi

which combines their
effects.

Since (a/λ) � 1, where a is a molecular dimension and λ is a light wavelength, we are
well justified in ignoring the higher-order multipoles beyond those shown in Eq. (2.2). More
specifically, for a given molecule, each higher order in the multipole expansion is suppressed
by an additional factor of order (a/λ), as usual. On the other hand, when averaged over
many molecules in a centrosymmetric bulk, the signal associated with odd-rank susceptibility

tensors (like
↔
α
D

) vanishes, while even-rank contributions (like
↔
α
Qi

) do not. Since there are
many more molecules in the bulk than the surface, the effect of even-rank tensors is boosted

by a factor of order (a/λ)−1 compared to odd-rank. From these two considerations,
↔
α
D

and
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↔
α
Qi

together comprise the lowest-order term of an (a/λ)� 1 expansion, justifying the choice
of terms shown in Eq. (2.2) [1].

Before using Eqs. (2.2), a specific position which we call the “molecular center” ~O must be

given. (Usually, one would choose ~O to be at a point on the molecule.) This position serves
several functions. First, it is the point where the fields and their derivatives are sampled, i.e.

~E1 ≡ ~E1( ~O) = ~E0
1e
i~k1· ~O, ~E2 ≡ ~E2( ~O) = ~E0

2e
i~k2· ~O. (2.3)

(Similarly for (∇ ~Ei) and ~Bi.) Second, it is the point where the dipole and quadrupole

radiation fields from ~p(2),
↔
q

(2)
, ~µ(2) are assumed to be centered. This is relevant in calculating

the phase delay in traveling to the detector: The measured signal amplitude is proportional
to

~π
(2)
eff ≡ ~p

(2)
eff e
−i~kSF· ~O. (2.4)

Formally, the molecular center ~O is the origin about which the multipole expansion is per-
formed. This theoretical parameter ~O cannot, of course, alter a measurable quantity such
as ~π

(2)
eff . It does, however, alter other relevant but non-measurable parameters. To see this,

we formally rewrite Eq. (2.2) in a way that distinguishes purely dipolar coupling between

the molecule and input fields (yielding a response ~p
(2)
D ) from those involving a field gradient

(~p
(2)
Q ). We will soon see, however, that the division is not unique, but generally depends on

~O.

~p
(2)

eff, ~O
(ωSF, ~kSF) = ~p

(2)

D,~O
(ωSF, ~kSF) + ~p

(2)

Q,~O
(ωSF, ~kSF)

~p
(2)

D,~O
=

↔
α
D

: ~E1, ~O
~E2, ~O (2.5)

~p
(2)

Q,~O
= i

[
↔
α
Q1
~O : ~E1, ~O

~E2, ~O
~k1 +

↔
α
Q2
~O : ~E1, ~O

~E2, ~O
~k2 −

↔
α
Qs
~O : ~E1, ~O

~E2, ~O
~kSF

]
(Quantities in Eq. (2.5) which vary depending on the molecular center are marked with a

subscript ~O). As we prove in Appendix 2.A,
↔
α
D

is independent of the molecular center ~O,

but
↔
α
Qi

depends on ~O: If ~O and ~O′ ≡ ~O −∆ ~O are two molecular centers,

↔
α
Qi
~O′ =

↔
α
Qi
~O +

↔
α
D

∆ ~O (2.6)

To confirm that ~π
(2)

eff, ~O
is independent of ~O, we combine Eqs. (2.2)-(2.5) to get

~π
(2)

eff, ~O
= [~p

(2)

D,~O
+ ~p

(2)

Q,~O
]e−i

~kSF· ~O (2.7)

~p
(2)

D,~O′e
−i~kSF· ~O′ − ~p(2)

D,~O
e−i

~kSF· ~O =
(

↔
α
D

: ~E0
1
~E0

2

)(
e−i∆

~k· ~O′ − e−i∆~k· ~O′
)

(2.8)

=
(

↔
α
D

: ~E0
1
~E0

2

)(
i∆~k ·∆ ~O + · · ·

)
e−i∆

~k· ~O (2.9)

~p
(2)

Q,~O′e
−i~kSF· ~O′ − ~p(2)

Q,~O
e−i

~kSF· ~O = −i
(

↔
α
D

: ~E0
1
~E0

2

)(
∆~k · ~O

)
e−i∆

~k· ~O + · · · (2.10)
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We then see, in the limit of neglecting higher-order terms of |∆~k · ( ~O − ~O′)| (i.e., in the
spirit of multipole expansion, neglecting responses of higher order than quadrupole), that

the molecular-center dependences of ~p
(2)
D and ~p

(2)
Q cancel each other:

~π
(2)

eff, ~O
= [~p

(2)

D,~O
+ ~p

(2)

Q,~O
]e−i

~kSF· ~O = [~p
(2)

D,~O′ + ~p
(2)

Q,~O′ ]e
−i~kSF· ~O′

= ~π
(2)

eff, ~O′ (2.11)

This confirms the earlier statement that ~π
(2)
eff does not depend on the choice of the molecular

center ~O of the coordinate system, but ~p
(2)
D and ~p

(2)
Q do. The latter often leads to ambiguity

in distinguishing electric-dipole and quadrupole responses of a molecule.

2.3.2 Surface and Bulk SF Susceptibities

The bulk SF susceptibility of a system is usually defined as

↔
χ

(2)

B (ωSF, ~kSF) ≡ 1

V

∑
j

[~p
(2)
eff,j/

~E1j
~E2j], (2.12)

where the sum is over individual molecules (j) in a mesoscopic bulk volume V with di-

mensions large compared to a molecule, and ~E1j = ~E0
1e
i~k1· ~Oj , ~E2j = ~E0

2e
i~k2· ~Oj . (The vector

division in (2.12) is defined in the obvious way: For the (i,m, n)th Cartesian component of
↔
χ

(2)

B , use the ith component of ~p
(2)
eff,j m

th of ~E1j, and nth of ~E2j.) For a medium with inversion

symmetry, the electric-dipole part, ~p
(2)
D , of ~p

(2)
eff vanishes in summation, but the quadrupole

part, ~p
(2)
Q , survives; as we showed in the preceding section, ~p

(2)
Q depends on the choice of

molecular center. Hence, we expect that
↔
χ

(2)

B must also depend on the choice of molecular

center. From the expression for ~p
(2)
Q in Eq. (2.5), we obtain, for the choice of molecular center

of the jth molecule at ~Oj,

↔
χ

(2)

B, ~O =
1

V

∑
j

i
(

↔
α
Q1

j, ~Oj
· ~k1 +

↔
α
Q2

j, ~Oj
· ~k2 −

↔
α
Qs

j, ~Oj
· ~ks
)
. (2.13)

If the molecular center is shifted from ~Oj to ~O′j = ~Oj −∆ ~Oj, then from Eq. (2.6), we have

↔
χ

(2)

B, ~O′−
↔
χ

(2)

B, ~O =
−i
V

∑
j

(
↔
α
D

j )( ~Oj ·∆~k) = −in
〈

↔
α
D

(∆ ~O ·∆~k)
〉

= −in
〈

↔
α
D

∆Oz

〉 ∣∣∣∆~k∣∣∣ (2.14)

where n denotes the density of molecules, and angular brackets indicate an average over
molecular orientations and arrangements in the bulk environment.

It was already known in the early development of second-harmonic generation and SFG for

surface studies that the surface and bulk terms in
↔
χ

(2)

S,eff of Eq. (2.1) are not separable, either
in theory or in measurement [9, 10]. On the other hand, as a measurable physical quantity,

31



↔
χ

(2)

S,eff naturally is independent of the choice of molecular center. Thus if
↔
χ

(2)

B depends on the

choice of molecular center, so must
↔
χ

(2)

S , but the sum of
↔
χ

(2)

S and
↔
χ

(2)

B /(−i∆k) must not. The
explicit proof is briefly outlined here, with more details given in Appendix 2.C.

Similar to the bulk case, the surface SF susceptibility is generally defined as

↔
χ

(2)

S (ωSF, ~kSF) ≡ 1

A

∑
surface layer
molecules j

[~p
(2)
eff,j/

~E1j
~E2j] (2.15)

where the summation is on molecules in a surface layer over a surface area A. The surface
layer is a thin region at the interface that is structurally different from the bulk. For second-
order nonlinear optical response of an iostropic liquid like water, for example, the surface
layer is the layer that has broken inversion symmetry.

Although this definition of “surface layer” is appropriate as a general guideline, it is too
vague to uniquely specify exactly which molecules belong in the sum (2.15). The transition
between anisotropic surface and isotropic bulk is gradual at an atomic level, not a sharp line;
and even if it were a sharp line, there would be molecules straddling the boundary. Instead,
it is shown in Appendix 2.B that the sum (2.15) should be modified to the following more
specific definition of “surface layer”:

↔
χ

(2)

S, ~O(ωSF, ~kSF) ≡ 1

A

∑
Oj,z>zB

[~p
(2)
eff,j/

~E1j
~E2j]. (2.16)

Surface environment

Centrosymmetric
bulk environment

Vapor

Liquid
(a) (b)

O
D    H

O

D    H

OD
    H

z=zB
z=zB

z=0

O D   
 H

Figure 2.6 – (a) An illustration for Eq. (2.17). The system is the same as the one described
in Fig. 2.1, with the plane z = zB indicated by a dashed line. The notional dividing plane
z = zB could be placed at any arbitrary depth within the isotropic bulk environment. (b)
A close-up view of the group of molecules with oxygen atoms immediately above the plane
z = zB. If oxygen is chosen as the molecular center, all of these molecules are included in
Eq. (2.17); if hydrogen is chosen instead, only half are.

Here, as sketched in Fig. 2.6a, the interface is at z = 0, the semi-infinite bulk medium
under discussion is at z < 0, and z = zB (< 0) is a plane sufficiently deep to be in the bulk
environment, but separated from the interface only by a microscopically small distance. The
molecules j with molecular center ~Oj above the plane z = zB are the ones included in the
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sum (2.16). In practice, the surface layer is microscopically thin, so the quadrupole part,

~p
(2)
Q , of ~p

(2)
eff can be neglected in the summation restricted to the surface layer:

↔
χ

(2)

S, ~O =
1

A

∑
Oj,z>zB

↔
α
D

j . (2.17)

Here, with
↔
α
D

j, ~Oj
being independent of ~Oj, the dependence on the choice of molecular center

comes as through counting of the set of molecules included in the summation. Changing the
molecular center from ~Oj to ~O′j = ~Oj −∆ ~Oj, but keeping zB unchanged for simplicity, will
add some molecules near zB to the sum in Eq. (2.17), and remove others. For illustration,
we show in Fig. 2.6b a system of HDO molecules, with the plane z = zB denoted by the
dashed line. There are a number of randomly oriented HDO molecules with their oxygen
(O) just above the plane (Fig. 2.6b). If the molecular center of HDO is taken to be on O,
these molecules will all be counted in the summation of Eq. (2.17). However, if the molecular
center is taken to be on the hydrogen (H), then half of these molecules will no longer be

counted in the sum, yielding a different value for
↔
χ

(2)

S . Since the effect of changing the

molecular center on
↔
χ

(2)

S is roughly from molecules within a layer of |∆ ~O| thick, the change

of
↔
χ

(2)

S is expected to be of the order of |↔αD∆ ~O|. In Appendix 2.C, we derive the net change

of
↔
χ

(2)

S due to the change from ~Oj to ~O′j precisely as:

↔
χ

(2)

S, ~O′ −
↔
χ

(2)

S, ~O = −n
〈

↔
α
D

∆Oz

〉
(2.18)

(consistent with Ref. [6]). Since
〈

↔
α
D

∆Oz

〉
6= 0 in general, this explicitly shows that a

different choice of ~O will yield a different
↔
χ

(2)

S .

From Eqs. (2.14) and (2.18), we see readily

↔
χ

(2)

S, ~O +

↔
χ

(2)

B, ~O

−i
∣∣∣∆~k∣∣∣ =

↔
χ

(2)

S, ~O′ +

↔
χ

(2)

B, ~O′

−i
∣∣∣∆~k∣∣∣ (2.19)

As a result,
↔
χ

(2)

S,eff is independent of the choice of molecular center ~O.

2.4 Ambiguities in molecular-dynamics calculations

Discussion in the previous section provides the correct framework for calculation to compare

with experiment of SFG, emphasizing the need to calculate
↔
χ

(2)

S,eff. Unfortunately, this is

not the usual practice reported in the literature. Instead, it is simply assumed that
↔
χ

(2)

B

would vanish and just
↔
χ

(2)

S is calculated, ignoring the fact that
↔
χ

(2)

S depends on the choice
of molecular center. As noticed recently by Noah-Vanhoucke et al. [6], different choices of
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molecular center can yield significantly different SF surface spectra. We shall elucidate this
by an example in a later section.

In practice, the ambiguity in
↔
χ

(2)

S is typically resolved by arbitrarily choosing a molecular
center to arrive at a definite answer. However, the arbitrary step (which may be subtle
and unintentional) depends on the simulation approach. Therefore we focus on molecular
simulations using a slab model, as described in the Introduction. For surface SFG, these
simulations often impose an artificial boundary surface at the middle of the slab to break the
inherent inversion symmetry of the slab [6]. We can relate this procedure to Eq. (2.17) by
assuming the artificial boundary surface is at z = zB. The molecules with molecular centers
above the artificial boundary surface are summed up, with the other molecules ignored. This

procedure is consistent with Eq. (2.17), so it is a legitimate way to calculate
↔
χ

(2)

S . However,

it also inherits the pathology that
↔
χ

(2)

S is an ambiguous quantity whose value depends on
the choice of molecular center. Consequently, as noted in Ref. [6], the SF spectrum calcu-

lated from
↔
χ

(2)

S by molecular simulation depends on the choice of molecular center. Clearly,

the correct SF spectrum must come from calculating
↔
χ

(2)

S,eff ≡
↔
χ

(2)

S +
↔
χ

(2)

B /(−i∆k), which is
independent of the choice of molecular center.

The higher-order bulk nonlinear susceptibility,
↔
χ

(2)

B , given by Eq. (2.13) (with further de-
tails in Appendix 2.A), is generally more difficult to calculate. Although detailed calculation

procedures can be found in Refs. [19–22], the facts that
↔
χ

(2)

B is an ambiguous quantity and
that its value depends on the choice of molecular center have not been discussed in the

literature. As shown in Appendix 2.A, a proper quantum-mechanical calculation of
↔
χ

(2)

B, ~O

should use the “relative” position operators ~r( ~O) ≡ ~r− ~O in the expressions for the moment
operators ~p,

↔
q , ~µ. Therefore, the result will in general depend on the choice of ~O.

In a molecular-simulation calculation of SFG, one would ideally determine
↔
χ

(2)

S,eff by cal-

culating both
↔
χ

(2)

S and
↔
χ

(2)

B with a consistent choice of molecular center. The difficulty of

computing
↔
χ

(2)

B , however, may render this approach impractical. A simpler approach is

to choose a molecular center that will minimize
↔
χ

(2)

B , and therefore maximize
↔
χ

(2)

S , for the
frequency-range and other parameters under investigation. Then, we may be able to argue

that
∣∣∣↔χ(2)

B, ~O/∆
~k
∣∣∣ � ∣∣∣↔χ(2)

S, ~O

∣∣∣, and hence
↔
χ

(2)

S,eff ≈
↔
χ

(2)

S, ~O, allowing us to obtain a fairly accurate

SF surface spectrum from calculating only
↔
χ

(2)

S . This is likely the case for isotropic liquids
composed of small molecules, or small functional groups on larger molecules. In the following
section, we use water as an example to illustrate these points.

2.5 Water as an Example

The air/neat-water interface has been studied extensively both in theory and in experiment.
There are quite a few molecular simulations of the SF surface spectrum of the system reported
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in the literature, but to our knowledge, none of them includes
↔
χ

(2)

B in the calculation. Here,

we show that
↔
χ

(2)

B is not negligible if the molecular center is not judiciously chosen. We begin

by analyzing
↔
χ

(2)

B more closely. The contribution of
↔
χ

(2)

B to the experimental signal can be
calculated by appropriately combining its tensor elements, assuming an isotropic bulk. This
contribution is proportional to [8]:

P
(2)
B ∝

(~k2 · ê1)χQ2
xyxy − (~ks · ê1)χQsxyxy

∆k
(ê2 · ês) +

+
(~k1 · ê2)χQ1

xxyy − (~ks · ê2)χQsxxyy
∆k

(ê1 · ês) +
(~k1 · ês)χQ1

xyyx + (~k2 · ês)χQ2
xyyx

∆k
(ê1 · ê2) (2.20)

where ê1, ê2, ês are the polarizations of the three waves, and following Eq. (2.13), we define
↔
χ
Qi

= (1/V )
∑

t

↔
α
Qi

t , a sum over a representative volume V in the bulk.

We now consider, for simplicity, an isotopically diluted HDO:D2O (in the infinite dilution
limit) system and focus on SFG with one incoming wave ω1 resonant with the OH stretch
mode. In the OH stretch vibrational mode of HDO, the hydrogen atom oscillates along
the OH bond, while the heavier oxygen atom is relatively stationary and the electronic
wavefunction is not substantially perturbed. To the extent that one-dimensional hydrogen
vibration dominates charge motion in this mode, we expect the corresponding transition

quadrupole to be very small,
↔
α
Q1

~rH
, provided the molecular center is placed at the H atoms

equilibrium position ~rH. On the other hand, the response of an HOD molecule at visible
frequencies ω2 and ωSF arises mainly from valence electron fluctuations, which are governed
by wave functions centered nearly at the oxygen atom. Assuming these transitions do not
have a strong intrinsic quadrupole character—for example, if the electron cloud shifts back

and forth without much distortion in shape—we expect that
↔
α
Q2

~rO
≈ 0 and

↔
α
Qs

~rO
≈ 0, where

~rO is the oxygen atom position. If we now choose the molecular center at an arbitrary point
~O, then we find from Eq. (2.6):

(αQ1
~O

)j`mn ≈ αDj`m ·
(
~rH − ~O

)
n
, (αQ2

~O
)j`mn ≈ αDj`m ·

(
~rO − ~O

)
n
, (αQs~O )j`mn ≈ αDj`m ·

(
~rO − ~O

)
n

(2.21)

Substituting these idealized expressions for quadrupole susceptibilities into Eq. (2.20),
assuming a typical experimental setup (45◦ angle of incidence, λ1 ≈ 3µm, λ2 = 512nm [23]),
we have

(χ
(2)

B, ~O
)SSP ∝ (~k2 · ê1)χQ2

~O,xyxy
− (~ks · ê1)χQs~O,xyxy ∝

∣∣∣~rO − ~O
∣∣∣ (2.22)

(χ
(2)

B, ~O
)SPS ∝ (~k1 · ê2)χQ1

~O,xxyy
− (~ks · ê2)χQs~O,xxyy ∝

∣∣∣(0.995~rO + 0.005~rH)− ~O
∣∣∣ (2.23)

(χ
(2)

B, ~O
)PSS ∝ (~k1 · ês)χQ1

~O,xyyx
+ (~k2 · ês)χQ2

~O,xyyx
∝
∣∣∣(0.85~rO + 0.15~rH)− ~O

∣∣∣ (2.24)

where the abbreviations “SSP”, “SPS”, “PSS” each represent the polarizations for the SF,
visible, and IR light, respectively. (For the various reflection-geometry experimental setups
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in the literature, the decimals in Eqs. (2.23)–(2.24) change only slightly, although they are
dramatically different for transmissive measurements.) The above equations suggest that
↔
χ

(2)

B is nearly vanishing and
↔
χ

(2)

S,eff ≈
↔
χ

(2)

S if the molecular center is chosen to be:

• At the O of HDO for SFG with SSP or SPS polarizations,

• Near the O of HDO, but displaced 15% of the way towards H along the OH bond, for
PSS polarization.

Thus, with the proper choice of molecular center, we may only need to find
↔
χ

(2)

S to obtain
an approximately correct OH stretch spectrum for the air/HDO interface. This conclusion
is supported by an MD calculation, as described below. We emphasize again, however, that
this conclusion is contingent on the assumptions about HOD molecular transitions discussed
above Eq. (2.21).

Figure 2.7 – An instantaneous water configuration from the MD simulation. Red and blue
circles represent hydrogen and oxygen respectively. The top and bottom are the air interfaces,
while the left, right, front, and back are periodic boundary conditions.

We have carried out MD simulations to calculate
↔
χ

(2)

S for the air/HDO:D2O interface with
SSP polarization, using a slab model with different choices of molecular center. We closely
followed the method of Ref. [6]. Specifically, we simulate an isotopically-diluted water system,
comprising one HDO molecule together with 511 D2O molecules. These SPC/E molecules
were put in a 6 × 6 × 6 nm3 box, with 4 nm of vacuum separating the 2nm-thick slab
from its periodic replicas. After Nosé-Hoover equilibration at 298K, we integrated Newton’s
equations of motion for 100 ps with LAMMPS software [24]. The OH stretch frequencies were
inferred from the local electric fields, which in turn were calculated in LAMMPS using slab-
corrected Ewald summation [25]. The SFG signal of each bond was calculated from the full

HOD hyperpolarizability tensor, using the vacuum values tabulated in Ref. [6]. Im
↔
χ

(2)

S was

calculated from the simulations, and Re
↔
χ

(2)

S inferred from Kramers-Kronig relations to obtain
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∣∣∣↔χ(2)

S

∣∣∣2. As discussed in Ref. [6], these simplified calculations neglect a host of effects including

homogeneous broadening, motional narrowing, and intermolecular coupling. In addition to
SSP polarization, an SPS spectrum (not shown) was also calculated, but its correspondence
with the experimental measurements [26] is too weak to draw useful conclusions on the merits
of different molecular centers. This poor agreement may be due to an important motional
effect [26] not included in our static simulations.

The center-of-mass plane of the slab was used as the “artificial boundary” at each time-
step: Molecules with their molecular centers above the plane were included in the top inter-
face region, while molecules with molecular centers below the plane were ignored (but reused
for a separate calculation for the bottom interface that was averaged into the final results).

- 4
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 O H  m i d p o i n t
 W h o l e  m o l e c u l e
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Figure 2.8 – Calculated SFG spectra for HOD:D2O with different molecular centers. Light
polarization is SSP. See text for descriptions.

Simulation results corresponding to different choices of molecular center are shown in
Fig. 2.8. The calculations performed with oxygen as molecular center are plotted with a
thicker line in the graphs, highlighting the fact that this choice is suggested to be optimal
for SSP polarization in the analysis above. Note that, as expected, the peak at 3700 cm−1 is
independent of molecular center: It is due to dangling OH bonds at the surface, and therefore
is insensitive to how molecules in the bulk environment near the artificial boundary surface
are counted.

The plots in Fig. 2.8 show the consequences of choosing O, H, or OH-midpoint as the
molecular center. Also shown is the“whole molecule” result, where the contribution from
HDO was included only if all three atoms of HDO were above the slab center-of-mass plane.
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We calculated as well the spectrum for which the center of mass of HDO served as the
molecular center [27]; it is almost indistinguishable from the result for O as the molecular
center.

3 2 0 0 3 4 0 0 3 6 0 0 3 8 0 0- 4

0

4

8

Im
(χ(2) S

) (a
.u.

)
W a v e n u m b e r  ( c m - 1 )

 H
 H + 3 p s
 H + 1 0 p s
 O + 1 0 p s
 O + 3 p s
 O

Figure 2.9 – Effect of time-delayed molecular center. Each molecule is counted as above or
below the slab center-of-mass using hydrogen or oxygen as the molecular center. Following
equilibrium dynamics over 0, 3, or 10ps, its contribution to the SFG signal is subsequently
calculated. Polarization is SSP.

Others have used a different approach: Instead of choosing molecules nearest the interface
in each configuration, the molecules are assigned to the top or bottom interface at the start
of a short trajectory. The same molecules are counted as contributors throughout the time
duration as they diffuse around [14–16]. In our formalism, we would say that the molecular

center ~O for a molecule is chosen based on where the molecule was, instead of where it is. We
illustrate the effect of this method in Fig. 2.9, where molecules are associated to an interface
at one time-step, then allowed to freely time-evolve for a certain “delay”, before their signal
is calculated.

It is clear from Figs. 2.8–2.9 that the differences between Im
↔
χ

(2)

S spectra calculated with
different molecular centers can be comparable in magnitude to the spectra themselves. There-

fore, we conclude that if the molecular center ~O is not carefully chosen, then
∣∣∣↔χ(2)

B, ~O

∣∣∣ can

be as large as
↔
χ

(2)

S, ~O. On the other hand, if ~O is judiciously chosen, it is possible that∣∣∣↔χ(2)

B, ~O/∆
~k
∣∣∣� ∣∣∣↔χ(2)

S, ~O

∣∣∣.
Finally, we compare the calculated spectra with experimental measurements. For SSP, the

Im
↔
χ

(2)

S,eff spectrum for dilute HDO/D2O isotopic mixtures has been measured directly [23],
and shows a strong negative peak in the 3300-3600 cm−1 range. This feature is most con-
sistent with our calculation that takes the oxygen molecular center. Therefore, our a priori
reasoning about optimal choices for molecular centers appears well-founded. We note our
calculation, similar to many others, is incapable of reproducing the experimentally observed
positive band below 3300 cm−1 [3].
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2.6 Conclusion

We have examined the formalism of SFVS in terms of multipole expansion, emphasizing

that
↔
χ

(2)

S and
↔
χ

(2)

B are ambiguous, but their combination
↔
χ

(2)

S,eff is unambiguous. Accordingly,

a calculation of
↔
χ

(2)

S alone to describe the SF response should yield ambiguous results, as is
the case in practice. This analysis explains the recently-discovered troubling ambiguity in
slab-based molecular simulations [6].

Ambiguity in separation of surface and bulk contributions in second-harmonic and SF
reflection from a surface or interface is a famously problematic issue [1, 8–10]. However, we
show in this paper that we can still discuss from a physical perspective how to optimally

choose the molecular center to minimize
↔
χ

(2)

B in favor of
↔
χ

(2)

S in the division of
↔
χ

(2)

S,eff into
↔
χ

(2)

S

and
↔
χ

(2)

B . In many cases, we can then argue from physical reasoning that
↔
χ

(2)

S,eff ≈
↔
χ

(2)

S , so

that the spectrum calculated from
↔
χ

(2)

S alone should compare well with experiment.

We have examined in particular the case of air/water interface, where choosing different

molecular centers and calculating only
↔
χ

(2)

S in SF response can result in very different SF
vibrational spectra [6]. The problem was resolved, at least approximately, by consideration of
the charge motion within the water molecule. Such considerations allow us to predict a priori

which molecular center should be chosen to minimize the contribution of
↔
χ

(2)

B . We accordingly
suggest that the O atom is an optimal molecular center for reflection-geometry SSP and SPS
polarizations, while the point 0.15Å from O towards H is optimal for PSS. Comparison
between experimentally measured and computed spectra supports this expectation.

As a final note, we have argued that the surface and bulk can be mathematically split in
many different ways. When combined, any split will give the same correct answer. In this
sense, all splits are “equally valid”. But this is a narrow statement; from other points of
view, some splits are better than others. One example was discussed above: For simulation

purposes, one might prefer the split that accomplishes the goal of
↔
χ

(2)

S,eff ≈
↔
χ

(2)

S . A different
but very important example, not discussed in this thesis, is the goal of finding a physically

meaningful split: One where
↔
χ

(2)

S is helpful for physically understanding the surface, and
↔
χ

(2)

B

is helpful for physically understand the bulk. There is indeed a “most physically meaningful”

split (called
↔
χ

(2)

SS and
↔
χ

(2)

BB), and it is both theoretically unique and experimentally measurable.
See Ref. [2] for a thorough discussion.
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2.A Appendix: Microscopic expressions for electric-dipole, electric-
quadrupole, and magnetic-dipole polarizabilities, and their
relations to the choice of molecular center.

We show here, from the microscopic expressions of the electric-dipole and quadrupole SF

polarizabilities of a molecule,
↔
α
D

and
↔
α
Qi

, that
↔
α
D

does not depend on the choice of molecular

center, but
↔
α
Qi

does. (The molecular-center dependence of
↔
χ

(2)

S comes from the summation

over
↔
α
D

in Eq. (2.17), not from the individual
↔
α
D

s themselves.)

The basis of this analysis is the light-matter interaction Hamiltonian for a plane wave,
written in the form of a multipole expansion about the point ~O [13, 28]:

H = −pjEj − qj`∂jE` − µjBj + · · · (2.25)

with pj ≡
∑

β e
(β)r

(β),( ~O)
j , qj` ≡ 1

2

∑
β e

(β)r
(β),( ~O)
j r

(β),( ~O)
` , µj ≡

∑
β

e(β)

2m(β) (~r
(β),( ~O) × ~π(β))j ,

with e(β), r(β), π(β), and m(β) denoting the charge, position, momentum, and mass of the
electron or ion labeled β, and where j and ` are Cartesian indices. In this expression, all
EM fields and derivatives are evaluated at the point ~O (i.e., ~E ≡ ~E( ~O), ~B ≡ ~B( ~O), etc.),

and all position-operators are defined relative to ~O (i.e. ~r(β),( ~O) ≡ ~r(β) − ~O).

A multipole expansion about ~O of the outgoing sum-frequency radiation field is charac-
terized by the induced moments p

(2)
j (ωSF), q

(2)
j` (ωSF), µ

(2)
j (ωSF) at the sum frequency are given

by

p
(2)
j (ωSF) = αDj`nE1`E2n + αQ1,EQ

j`nt (∂tE1`)E2n + αQ2,EQ
j`nt E1`(∂tE2n) +

+ αQ1,MD
j`n B1`E2n + αQ2,MD

j`n E1`B2n (2.26)

q
(2)
jt (ωSF) = αQs,EQ

j`nt E1`E2n (2.27)

µ
(2)
j (ωSF) = αQs,MD

j`n E1`E2n (2.28)
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with
αDj`n = F (pj, p`, pn) (2.29)

αQs,EQ
j`nt = F (qjt, p`, pn) (2.30)

αQs,MD
j`nt = F (µj, p`, pn) (2.31)

αQ1,EQ
j`nt = F (pj, q`t, pn) (2.32)

αQ1,MD
j`n = F (pj, µ`, pn) (2.33)

αQ2,EQ
j`nt = F (pj, p`, qnt) (2.34)

αQ2,MD
j`n = F (pj, p`, µn) (2.35)

F (A,B,C) =
−1

~2

∑
g,s,t

[
ρ(0)
gg

(A)gs(B)st(C)tg
(ω2 − ωtg + iΓtg)(ωSF − ωsg + iΓsg)

+ · · ·
]

(2.36)

where “· · · ” denotes five other similar terms, ωsg and Γsg and the frequency and damping con-
stant of the resonance between states s and g, and A, B, and C represent operators involved
in the light-matter interaction (Eq. (2.25)) at frequencies ωSF, ω1, and ω2, respectively. (The
conclusions would not be altered if the Γs were replaced with a more sophisticated treatment
of dephasing.) The “effective” electric-dipole moment, ~p

(2)
eff (ωSF, ~kSF) is defined as the oscil-

lating dipole moment which, by itself, would produce the same SF radiation in the direction
~kSF as is due in reality to ~p(2),

↔
q

(2)
, and ~µ(2) together. This can be written as:

p
(2)
eff,j(ωSF, ~kSF) = p

(2)
j − (i~kSF ·

↔
q

(2)
)j −

c

ωSF

(~kSF × ~µ(2)))j =

=
(
αDj`n + i

(
αQ1
j`ntk1t + αQ2

j`ntk2t − αQsj`ntkSF,t

))
E1`E2n (2.37)

in which
↔
α
Qi

includes both electric-quadrupole and magnetic-dipole parts:

αQsj`nt = αQs,EQ
j`nt +

i

ωSF

αQs,MD
b`n εbtj (2.38)

αQ1
j`nt = αQ1,EQ

j`nt − i

ω1

αQ1,MD
jbn εbt` (2.39)

αQ2
j`nt = αQ2,EQ

j`nt − i

ω2

αQ2,MD
j`b εbtn (2.40)

where εj`n is the Levi-Civita tensor.

Next, we wish to show that
↔
α
D

does not depend on the choice of molecular center, while
↔
α
Qi

does. To proceed, we state a few mathematical identities which are straightforward but
tedious to prove. First,

0 = F (c,X, Y ) = F (X, c, Y ) = F (X, Y, c) (2.41)
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for any operators X, Y and any c-number c. Second,

∑
β

e(β)

m(β)
F (π

(β)
j , µ`, µn) = −iωSFF (µj, µ`, µn) (2.42)

∑
β

e(β)

m(β)
F (µj, π

(β)
` , µn) = iω1F (µj, µ`, µn) (2.43)

∑
β

e(β)

m(β)
F (µj, µ`, π

(β)
n ) = iω2F (µj, µ`, µn) (2.44)

These three equations are derived from ~π(β) = (mi/~)[H0, r
(β)], where H0 is the unperturbed

Hamiltonian, H0 = V (~r(1), ~r(2), . . .) +
∑

β |~π(β)|2/(2m(β)). Third, for different molecular

centers ~O and ~O′,

p
( ~O′)
j = p

( ~O)
j + ( ~O − ~O′)jQ (2.45)

q
( ~O′)
`t = q

( ~O)
`t +

1

2
( ~O − ~O′)tp

( ~O)
` +

1

2
( ~O − ~O′)`p

( ~O′)
t , (2.46)

µ( ~O′) = µ( ~O′) + ( ~O − ~O′)×
∑
β

e(β)

2m(β)
~π(β). (2.47)

where Q ≡
∑

β e
(β) is the total charge.

Using Eqs. (2.41) and (2.45), and the fact that ( ~O − ~O′)Q is a constant (c-number)

vector, we can prove that αD is independent of ~O. However,
↔
α
Qi

does have molecular-center
dependence: Using Eqs. (2.43),(2.46),(2.47):

α
Q1,EQ,( ~O′)
j`nt = α

Q1,EQ,( ~O)
j`nt +

1

2
αDj`n( ~O − ~O′)t +

1

2
αDjtn( ~O − ~O′)` (2.48)

α
Q1,MD,( ~O′)
j`n = αQ1,MD,( ~O) +

iω1

2
ε`tbα

D
jbn( ~O − ~O′)t (2.49)

and therefore, by Eq. (2.39),

α
Q1,( ~O′)
j`nt −αQ1,( ~O)

j`nt =
1

2
αDjtn( ~O− ~O′)`+

1

2
αDj`n( ~O− ~O′)t+

1

2
εbt`εbdfα

D
jfn( ~O− ~O′)t = αDj`n( ~O− ~O′)t.

(2.50)

Similarly for all
↔
α
Qi

,

α
Qi,( ~O′)
j`nt − αQi,( ~O)

j`nt = αDj`n( ~O − ~O′)t. (2.51)

Thus,
↔
α
Qi

depends on the choice of molecular center in a way that incorporates some part
of the dipole susceptibility.
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2.B Appendix: Effective surface susceptibility

The SF signals in transmission and reflection from a semi-infinite medium are proportional

to
∣∣∣↔χ(2)

S,eff

∣∣∣2, where the effective surface nonlinear susceptibility
↔
χ

(2)

S,eff is related to the surface

and bulk nonlinear susceptibilities
↔
χ

(2)

S, ~O and
↔
χ

(2)

B, ~O by

↔
χ

(2)

S,eff ≡
↔
χ

(2)

S, ~O +

↔
χ

(2)

B, ~O

−i∆k
(2.52)

Macroscopically, this relation is usually derived from a three-layer model [29]. However,
as discussed in the text, there is no unique sharp line splitting surface and bulk, so it is

not necessarily obvious how to define
↔
χ

(2)

S in terms of microscopic variables, nor how the

definition should depend on the molecular center ~O. We restrict attention to the simple
case we have been considering, where the index of refraction is constant everywhere. The
purpose of this section is to show explicitly that Eq. (2.52) is consistent with the microscopic
definitions Eqs. (2.13) and (2.17), which we copy here for convenience:

↔
χ

(2)

B, ~O =
1

V

∑
j

i
(

↔
α
Q1

j, ~Oj
· ~k1 +

↔
α
Q2

j, ~Oj
· ~k2 −

↔
α
Qs

j, ~Oj
· ~ks
)
, (2.13)

↔
χ

(2)

S, ~O =
1

A

∑
Oj,z>zB

↔
α
D

j . (2.17)

The SF output field from the surface and the bulk of the medium can be considered
as generated by an equivalent surface sheet of nonlinear polarization, ~P

(2)
S,eff, which contains

contributions from all molecules:

~P
(2)
eff =

1

A

∑
j

~π
(2)
eff,j =

1

A

∑
( ~Oj)z>zB

~π
(2)
eff,j +

1

A

∑
( ~Oj)z<zB

~π
(2)
eff,j (2.53)

where ~π
(2)
eff,j is the contribution of the jth molecule to the signal amplitude at the detector,

Eq. (2.4). The above equation splits the sum of ~π
(2)
eff over all molecules into a sum of molecules

with molecular center above the z = zB plane, and a sum of molecules with molecular centers
below. Here, the coordinate system is defined so that the medium spans z < 0, and |zB| is
the thickness of the surface layer (Fig. 2.6a), assumed to be much less than a wavelength
but thick enough that z = zB is indistinguishable from the bulk environment.

Starting with the bulk part,

1

A

∑
( ~Oj)z<zB

~π
(2)
eff,j =

1

A

∫ zB

−∞

 ∑
( ~Oj)z=z

~p
(2)

eff,j, ~Oj
e−i

~kSF· ~Oj

 dz. (2.54)
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Here, the sum is split into an integral, grouping together molecules with molecular center at
a given height z = zB. For each z ≤ zB, the contributions from ~p

(2)
D (Eq. 2.54) cancel exactly,

due to the centrosymmetry of each group of molecules. More specifically, with the incoming

fields given by ~E1(~r) = ~E0
1e
i~k1·~r and ~E2(~r) = ~E0

2e
i~k2·~r, we can write

∑
( ~Oj)z=z

~p
(2)

D,j, ~Oj
e−i

~kSF· ~Oj =

 ∑
( ~Oj)z=z

↔
α
D

j e
−i∆~k· ~Oj

: ~E0
1
~E0

2 (2.55)

For any group of bulk molecules with centrosymmetric distribution of orientations, the sum∑
j

↔
α
D

j vanishes exactly. However, the sum above also involves an exponential phase factor,
and with that factor, the sum from such a group of molecules need not vanish exactly,
but only to lowest order in the exponential. In this analysis, we are grouping molecules
by the height of their molecular center to ensure that the sum (2.55) vanishes exactly (not
just to lowest order) because the molecules in these groups have not only centrosymmetric
orientation distributions, but also constant exponential factor.

Therefore, we can drop the contributions from ~p
(2)
D , and write the bulk part as

1

A

∑
( ~Oj)z>zB

~π
(2)
eff,j =

 1

A

∫ zB

−∞

 ∑
( ~Oj)z=z

e−i∆
~k· ~Oj i

(
↔
α
Q1

j, ~Oj
· ~k1 +

↔
α
Q2

j, ~Oj
· ~k2 −

↔
α
Qs

j, ~Oj
· ~ks
) dz

: ~E0
1
~E0

2

=
(

↔
χ

(2)

B, ~O: ~E0
1
~E0

2

)∫ zB

−∞
e−i|∆k|zdz ≈

(
↔
χ

(2)

B, ~O: ~E0
1
~E0

2

)∫ 0

−∞
e−i|∆k|zdz =

↔
χ

(2)

B, ~O

−i|∆k|
: ~E0

1
~E0

2

(using Eq. 2.13).

For the surface part, since we are neglecting the possibility of field discontinuities across
the interface, the quadrupole contribution of surface molecules is negligible compared to their
dipole contribution. (We are assuming the surface layer is much thinner than a wavelength.)
Therefore we have:

1

A

∑
( ~Oj)z>zB

~π
(2)
eff,j ≈

 1

A

∑
( ~Oj)z>zB

↔
α
D

j e
−i∆~k· ~Oj

: ~E0
1
~E0

2 ≈

 1

A

∑
( ~Oj)z>zB

↔
α
D

j

: ~E0
1
~E0

2 =
↔
χ

(2)

S, ~O: ~E0
1
~E0

2

(using Eq. 2.17).

This proves that the microscopic definitions of
↔
χ

(2)

B, ~O and
↔
χ

(2)

S, ~O in Eqs. (2.13) and (2.17)
are indeed appropriate to get results consistent with macroscopic continuum models.
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2.C Appendix: Dependence of χ
(2)
S on the choice of molecular cen-

ter

To calculate the dependence of
↔
χ

(2)

S on ~O, we start with Eq. (2.17) from above:

↔
χ

(2)

S, ~O =
1

A

∑
Oj,z>zB

↔
α
D

j . (2.17)

We assume that the molecular center ~O for each molecule is fixed in molecular coordinates.
Changing the molecular center from ~O to ~O′ = ~O − ∆ ~O, but keeping zB unchanged, will
remove from the sum those molecules with Oz > zB but O′z < zB, i.e. molecules originally
in the region zB < Oz < zB + ∆Oz. Likewise, it will add to the sum molecules with Oz < zB
but O′z > zB, i.e. molecules originally in the region zB > Oz > zB + ∆Oz.

Consider an ensemble of molecules with a given orientation
↔

Ω. For this ensemble, DOz has

a constant value ∆O
(
↔
Ω)
z . If ∆O

(
↔
Ω)
z > 0, some molecules from this ensemble will be eliminated

from the sum, namely those in the region zB < Oz < zB + ∆O
(
↔
Ω)
z . The volume of this region

is A∆O
(
↔
Ω)
z , so the change in

↔
χ

(2)

S due to these eliminated molecules is −n(
↔
Ω)〈↔αD〉↔

Ω
∆O

(
↔
Ω)
z d

↔

Ω,

where n(
↔
Ω)d

↔

Ω is the differential number density of molecules with the given orientation
↔

Ω. Likewise, if ∆O
(
↔
Ω)
z < 0, some molecules from this ensemble will be added into the

sum (2.17); namely those in the region zB > Oz > zB + ∆O
(
↔
Ω)
z . The volume of this

region is

∣∣∣∣A∆O
(
↔
Ω)
z

∣∣∣∣ = −A∆O
(
↔
Ω)
z , so the change in

↔
χ

(2)

S due to these eliminated molecules is

−n(
↔
Ω)〈↔αD〉↔

Ω
∆O

(
↔
Ω)
z d

↔

Ω, the same expression as before.

Altogether,

↔
χ

(2)

S, ~O′ −
↔
χ

(2)

S, ~O =

∫
d

↔

Ω

(
−n(

↔
Ω)〈↔αD↔

Ω
∆O(

↔
Ω)
z

)
= −n〈↔αD∆Oz〉,

where the angle-brackets are a statistical average over molecules’ orientations and local
environments. This formula is consistent with that derived in Noah-Vanhoucke et al. [6].

2.D Appendix: Modification of LAMMPS source-code to output
electric forces

As described above, the process for inferring an SFG spectrum from a molecular configuration
followed the simplified approach of Ref. [6]. An important step is that the instantaneous
OH vibrational frequency is inferred from the electric field on the hydrogen atom, following
a presumed linear dependence established in prior studies [30].
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Molecular simulations were performed using the LAMMPS software [24]. This software,
of course, internally calculates electric fields in the course of the simulation, as the electric
force is an important component of the total force on the atoms (other components include
the Lennard-Jones force, the bond stiffness force, etc.). However, even though LAMMPS
knows the electric field internally, it is not possible to output it. In this section, I describe
how to modify the LAMMPS source code to allow the electric field data to be exported and
saved.

I was using the following configuration:

• “cut/coul/long” pair-style

• “full” atom-style

• “verlet” (not rRESPA) integration

• Ewald (not pppm) field calculation

• 15 January 2010 version of the LAMMPS software

In the following, I will go through the source code file-by-file, saying what lines need to
be modified and how.

atom.h

Add into “public” area:

double **fcoul; // my code

“atom->fcoul” will be the Coulomb component of the force felt by the atom. This is modeled
on “atom->f”, the total force on the atom, which is stored and accessed in the same way.

atom.cpp

Add a line into the initialization (i.e. Atom::Atom(LAMMPS *lmp) : Pointers(lmp)):

x = v = f = NULL;

fcoul = NULL; // my code

Add a line into the destruction (i.e.Atom::~Atom):

memory->destroy_2d_double_array(f);

memory->destroy_2d_double_array(fcoul); // my code
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atom_vec_full.h

Add into “private” area (after “double **x,**v,**f;”):

double **fcoul; // my code

atom_vec_full.cpp

In “void AtomVecFull::grow(int n)”, add an extra line:

f = atom->f = memory->grow_2d_double_array(atom->f,nmax,3,"atom:f");

fcoul = atom->fcoul = memory->

grow_2d_double_array(atom->fcoul,nmax,3,"atom:fcoul"); // my code

In “double AtomVecFull::memory_usage()”, add an extra line:

if (atom->memcheck("f")) bytes += nmax*3 * sizeof(double);

if (atom->memcheck("fcoul")) bytes += nmax*3 * sizeof(double); // my code

In void AtomVecFull::grow_reset(), add an extra line:

x = atom->x; v = atom->v; f = atom->f;

fcoul = atom->fcoul; // my code

There are two more places where “f” is used in atom_vec_full.cpp: pack_reverse and
unpack_reverse. These should not get called, as explained below.

verlet.cpp

In void Verlet::force_clear() (which resets the force on atoms to zero), wherever it
resets a force, it should also reset fcoul. There should be three places in the program where
you modify it to look like:

f[i][0] = 0.0;

f[i][1] = 0.0;

f[i][2] = 0.0;

// my code

atom->fcoul[i][0] = 0.0;

atom->fcoul[i][1] = 0.0;

atom->fcoul[i][2] = 0.0;

// end my code
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(f was defined earlier in the program as atom->f).

Note on Coulomb force calculation:

If you look at verlet.cpp, the Coulomb force is calculated in two places: The short-range
part is calculated in the command pair->compute, and the long-range part in the command
kspace->compute. In both cases, we will “intercept” the Coulomb force data as it gets
written into atom->f, so that we can also write it into atom->fcoul.

pair_lj_cut_coul_long.cpp

Here is where the short-range part of the Coulomb force is calculated.

There are four main functions here, compute, compute_inner, compute_middle, compute_outer.
The last three are for rRESPA and do not get used in Velocity Verlet, so ignore them. You
only need to modify compute (more specifically,
void PairLJCutCoulLong::compute(int eflag, int vflag)).

You will see the following code to store the total short-range force:

fpair = (forcecoul + factor_lj*forcelj) * r2inv;

f[i][0] += delx*fpair;

f[i][1] += dely*fpair;

f[i][2] += delz*fpair;

if (newton_pair || j < nlocal) {

f[j][0] -= delx*fpair;

f[j][1] -= dely*fpair;

f[j][2] -= delz*fpair;

}

(f was defined earlier in the program as atom->f). There are three things to notice. First,
the program makes it clear how fpair is the sum of a Coulomb force and an LJ force.
Therefore it is easy to just extract the Coulomb part. Second, Newton’s third law is being
used: The force on j is minus the force on i. In LAMMPS, Newton’s third law is always
invoked if j is on the same processor as i (i.e., j<nlocal), and it is also always invoked if the
LAMMPS script has the “newton” flag turned on (which is the LAMMPS default). Finally,
when forcecoul is calculated (just earlier in the program), it uses factor_coul which
comes from special_coul which comes from the LAMMPS special_bonds command. The
default for special_bonds is that atoms directly or indirectly bonded do not have their
Coulomb forces included. (So if factor_coul=0, the pairwise Coulomb force should be zero,
and in fact forcecoul is set so that this short-range force cancels out the contribution to
the Ewald-sum long-range force.) If you instead want the total Coulomb force, including
Coulomb’s law applied to bonded atoms, you need to change the pair_special setting in
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your LAMMPS script, or else edit the forcecoul calculation just above to have it store
extra information. (factor_lj is a similar thing.)

As mentioned, just drop out the LJ part and keep the Coulomb part, and you should be
able to store the short-range Coulomb force. So put in the following code:

// my code: fcoul stores the Coulomb contribution to force

atom->fcoul[i][0] += delx * forcecoul * r2inv;

atom->fcoul[i][1] += dely * forcecoul * r2inv;

atom->fcoul[i][2] += delz * forcecoul * r2inv;

if (newton_pair || j < nlocal) {

atom->fcoul[j][0] -= delx * forcecoul * r2inv;

atom->fcoul[j][1] -= dely * forcecoul * r2inv;

atom->fcoul[j][2] -= delz * forcecoul * r2inv;

}

// end my code

Also, in your LAMMPS input script, you must turn off “newton”:

newton off

If you want to leave it on, you need to figure out how to modify void Comm::reverse_comm()

in comm.cpp, including its subroutines in atom_vec_full.cpp (i.e.,
AtomVecFull::unpack_reverse and AtomVecFull::pack_reverse). This function accounts
for the fact that part of the force on some of the atoms was calculated by the wrong processor
when newton is turned on, by making the processors communicate their calculations with
each other. Therefore if you use newton, the function needs to be modified to also correctly
communicate fcoul. But I did not bother to figure out the details: I am using serial mode
anyway.

ewald.cpp

In void Ewald::compute(int eflag, int vflag), here are the lines where the Coulomb
force is being stored:

f[i][0] += qqrd2e*q[i]*ek[i][0];

f[i][1] += qqrd2e*q[i]*ek[i][1];

f[i][2] += qqrd2e*q[i]*ek[i][2];

(f was defined earlier in the program as atom->f. qqrd2e is a unit conversion factor, also
incorporating the dielectric constant, which is the Coulomb energy between two charges q at
distance r: 332.06371 in “real” units with dielectric constant 1. [See force.h and force.cpp

and update.cpp.]) Modify it to:
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f[i][0] += qqrd2e*q[i]*ek[i][0];

f[i][1] += qqrd2e*q[i]*ek[i][1];

f[i][2] += qqrd2e*q[i]*ek[i][2];

// my code: fcoul stores the Coulomb contribution to force

atom->fcoul[i][0] += qqrd2e*q[i]*ek[i][0];

atom->fcoul[i][1] += qqrd2e*q[i]*ek[i][1];

atom->fcoul[i][2] += qqrd2e*q[i]*ek[i][2];

// end my code

Next, if you want to use slab correction (kspace_modify slab command in LAMMPS), you do
the same thing in void Ewald::slabcorr(int eflag):

for (int i = 0; i < nlocal; i++) f[i][2] += qqrd2e*q[i]*ffact;

// my code

for (int i = 0; i < nlocal; i++) atom->fcoul[i][2] += qqrd2e*q[i]*ffact;

// end my code

dump_custom.h

I just wanted to output the electric field, so the dump custom command is a good way to do it.
We want to add efieldx, efieldy, efieldz to the list of atom attributes that you can dump.
In this file, you need to add to the big list of pack (for example, after void pack_fz(int);):

//my code

void pack_efieldx(int);

void pack_efieldy(int);

void pack_efieldz(int);

//end my code

dump_custom.cpp

In void DumpCustom::parse_fields(int narg, char **arg), there is a big list reading the in-
put and calling the appropriate pack function, and you just add the new dump commands into
it:

...

} else if (strcmp(arg[iarg],"fz") == 0) {

pack_choice[i] = &DumpCustom::pack_fz;

vtype[i] = DOUBLE;

// my code

} else if (strcmp(arg[iarg],"efieldx") == 0) {

pack_choice[i] = &DumpCustom::pack_efieldx;
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vtype[i] = DOUBLE;

} else if (strcmp(arg[iarg],"efieldy") == 0) {

pack_choice[i] = &DumpCustom::pack_efieldy;

vtype[i] = DOUBLE;

} else if (strcmp(arg[iarg],"efieldz") == 0) {

pack_choice[i] = &DumpCustom::pack_efieldz;

vtype[i] = DOUBLE;

// end my code

Next, you need to add your new pack commands. Here is one of the ones in the original file...

void DumpCustom::pack_z(int n)

{

double **x = atom->x;

int nlocal = atom->nlocal;

for (int i = 0; i < nlocal; i++)

if (choose[i]) {

buf[n] = x[i][2];

n += size_one;

}

}

We basically copy this format. So the new ones to add are:

// my code

void DumpCustom::pack_efieldx(int n)

{

double **fcoul = atom->fcoul;

int nlocal = atom->nlocal;

for (int i = 0; i < nlocal; i++)

if (choose[i]) {

buf[n] = fcoul[i][0] / atom->q[i] / force->qe2f;

n += size_one;

}

}

void DumpCustom::pack_efieldy(int n)

{

double **fcoul = atom->fcoul;

int nlocal = atom->nlocal;

for (int i = 0; i < nlocal; i++)
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if (choose[i]) {

buf[n] = fcoul[i][1] / atom->q[i] / force->qe2f;

n += size_one;

}

}

void DumpCustom::pack_efieldz(int n)

{

double **fcoul = atom->fcoul;

int nlocal = atom->nlocal;

for (int i = 0; i < nlocal; i++)

if (choose[i]) {

buf[n] = fcoul[i][2] / atom->q[i] / force->qe2f;

n += size_one;

}

}

// end my code

Note that force->qe2f is a unit-conversion factor: 23.060549 in “real” units (see update.cpp). It
converts from a charge (“q”) times an electric field (“e”) to (“2”) a force (“f”). Therefore this code
will output an electric field in whatever unit system you are using – volts per angstrom in the case
of “real” units.

When compiling:

I found that my modified code had a “heisenbug”: When I compiled it normally, the program
crashed, but when I compiled it in debugging mode, it worked fine. I do not know what the bug
is. Instead, I just used the debugging-mode program for my calculations.

In your LAMMPS script file:

The code that goes into the LAMMPS script is something like:

dump SteveDump all custom 10 stevedumpfile.xyze &

id type x y z efieldx efieldy efieldz

#10 means every 10 timesteps

#Note that atoms are outputted in random and inconsistent order.

Again, remember to turn off newton:

newton off

and remember that if you want to include the electric field due to directly-bonded atoms, you need
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special_bonds coul 1.0 1.0 1.0

or you need to edit pair_lj_cut_coul_long.cpp differently. Note that the special_bonds com-
mand can be overwritten by other pair commands if you are not careful.
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3 Phase plate for nonlinear chirp compensation

3.1 Overview

Mode-locked lasers are widely used to produce ultrashort light pulses (in the femtosecond
range), for use in science and industry [1]. To get the pulse as short as possible, it is
important to perform “dispersion compensation” [1,2]. The goal of dispersion compensation
is to make the different light-frequencies in the pulse all have the same phase. Poor dispersion
compensation (called “chirp”) increases the pulse length. Perfect dispersion compensation
gives the “transform-limited” pulse; i.e., the shortest possible pulse for a given spectral
intensity profile.

Dispersion compensation is especially important in mode-locked fiber lasers, which suffer
much larger dispersion than other types of mode-locked lasers (e.g., Ti:Sapphire lasers),
primarily because of self-phase modulation in the fiber. It is also very important in few-cycle
pulse generation, where dispersion must be canceled very accurately, and in chirped-pulse-
amplification, where an enormous amount of chirp must be accurately canceled. It is also
important in fiber-optic telecommunication—Uncompensated nonlinear chirp can limit the
data-transmission rate [3, 4]

The dispersion of the pulse is characterized by the spectral phase function (phase as a
function of frequency). If this function is constant or linear, the light has the ideal (transform-
limited) pulse length. In reality, unfortunately, the function will not be linear, but instead it
will have a quadratic component, a cubic component, a quartic component, etc. In general
these components get smaller and smaller at higher and higher orders. Therefore, the most
important aspect of dispersion compensation is to eliminate the quadratic component, which
is also called “linear chirp” or “group velocity dispersion”; the second-most-important aspect
is to eliminate the cubic component (“quadratic chirp”); the third-most-important is to
eliminate the quartic component (“cubic chirp”); etc.

Compensating for linear chirp is a well-developed field. (Such techniques include Treacy
grating pairs, prism pairs, fiber Bragg gratings, chirped mirrors, dispersion-compensating
fibers, etc. [1,2].) Compensating for quadratic and higher-order chirp, however, is much less
developed, and there is no solution that is inexpensive, effective, and easy to adjust and
optimize.

In this study, we investigate a new optical component that promises to be an inexpensive
and convenient method to simultaneously and independently compensate linear, quadratic,
and cubic chirp, and thus to allow shorter pulses from mode-locked lasers, especially those
using chirped-pulse amplification. The rest of the chapter will proceed as follows. In Sec. 3.2,
we will give background about nonlinear chirp compensation, and how this device relates
and compares to other chirp compensation systems. In Sec. 3.3, we will discuss the plate
design and the motivating theoretical analysis. In Sec. 3.4, we will discuss how the plate was
made. In Sec. 3.5 we will discuss how Frequency-Resolved Optical Gating (FROG) was used
to characterize the ultrafast pulses, and hence to measure the plate’s effectiveness. Finally,
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in Sec. 3.6 we discuss the results of this characterization, and in Sec. 3.7 we discuss future
work.

3.2 Background on pulses, dispersion, and chirp

The electric field of a light-pulse can be written [1]:

E(t) =

∫
dνA(ν) Re

[
e−2πiνteiφ(ν)

]
(3.1)

where ν is frequency, A(ν) > 0 is the real spectral amplitude (i.e., the square root of spectral
intensity), and φ(ν) is the light-phase as a function of frequency.

The uncertainty principle states that [1]

(∆t)rms × (∆ν)rms ≥
1

4π
(3.2)

where (∆t)rms is the RMS width of the time-domain pulse I(t) ≡ |E(t)|2, and (∆ν)rms is
the RMS spread of the frequency-domain spectral intensity A(ν)2. Therefore, there are two
aspects to achieving a short pulse of light: Broaden the spectrum, and make sure that the
uncertainty product (Eq. (3.2)) is not too far above its minimum 1/4π. We focus on the
second aspect, taking the spectrum A(ν) to be fixed by external constraints (such as the
gain bandwidth of the laser).

The phase φ(ν) in Eq. (3.1) significantly affects the pulse length, even without changing
A(ν). If φ is constant, then the pulse has a peak at t = 0, and is moreover this pulse is
transform-limited, i.e. the highest possible intensity and narrowest width for the given A(ν).

If the phase φ(ν) is linearly varying, the pulse is still transform-limited, but peaks at a
time t 6= 0. This is because a shift of the time coordinate has the effect of adding a linear
offset to the phase function, φ(ν) → φ(ν) + 2πν∆t. However, if φ(ν) varies quadratically
with ν, the pulse has linear chirp, and lasts longer, with a lower peak intensity, then the
transform-limited pulse. If φ(ν) varies as a cubic function of ν, the pulse has quadratic
chirp; if φ(ν) is a quartic function, then the pulse has cubic chirp, and so forth. The origin
of this strange-seeming terminology is that, in nth-order chirp, the arrival time of a given
frequency component of the wave is an nth-order function of frequency. (Arrival time is
the first derivative of phase.) (Warning: The terminology in this field is not universally
consistent [2].) The quadratic, cubic, etc. components of chirp are referred to generically as
nonlinear chirp.

Linear chirp is often corrected via a Treacy prism-pair or grating-pair (Fig. 3.1). In this
configuration, the lower-frequency light travels farther, and therefore gets delayed relative to
higher-frequency light. This increases the “anomalous dispersion” or decreases the “normal
dispersion” of the light. To alter the linear chirp in the opposite manner—i.e., decrease
the anomalous dispersion or increase the normal dispersion—one can simply pass the light
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through glass, or any other transparent medium, of appropriate thickness. Alternatively, a
Treacy grating-pair can be altered to provide normal dispersion by appropriately inserting
one or more lenses in the optical path. [1]
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Figure 3.1 – Schematic of Treacy grating pair.

Unlike linear chirp, however, nonlinear chirp is quite difficult to correct. Ideally, a non-
linear chirp correction system would have the following desirable properties:

• Low cost

• High throughput (low loss by scattering, absorption, etc.)

• High damage threshold

• Easy alignment

• Easy tunability (As the laser is running, the pulse character may slightly change over
time, for example if the laser power is adjusted, or if there is uncontrolled environmental
instabilities; therefore it should be easy to adjust the chirp correction.)

Nonlinear-chirp-correction systems available to date satisfy some of these criteria to var-
ious extents, but none is ideal. We will next describe the systems available today, before
discussing the new phase plate.

Among the most powerful and common nonlinear chirp correction systems is the pro-
grammable spatial light modulator, particularly liquid-crystal (LC) and acousto-optic (AOM)
modulators [1,5]. Both are incorporated into a prism or grating structure, in a position where
different light frequencies pass through different parts of the device (cf. Fig. 3.2(b)). The
phase and/or amplitude of each frequency component is controlled separately, via computer
input. This allows pulse compression (cancellation of linear and nonlinear chirp) [6], and
also flexible pulse shaping [5]. These have simple alignment and tunability, but their dis-
advantages are high price, low throughput (especially for AOM), and low damage threshold
(especially for LC).
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Deformable mirrors [5] can also function as spatial light modulators and pulse compressors,
with high throughput and high damage threshold. These have simple alignment, reasonable
tunability, high throughput, and high damage threshold, but quite high cost.

Transparent plates with controlled thicknesses have been used to compensate quadratic
chirp [3] and arbitrary chirp [7], functioning like a non-adjustable version of a programmable
spatial light modulator. These have low cost, high throughput and damage threshold, and
easy alignment. Its only shortcoming is the lack of tunability. The new phase plate described
in this work is a variant of this design, but designed to be tunable.

As an alternative nonlinear chirp correction system, the stretcher and compressor of a
chirped-pulse amplifier can be modified in many ways to alter nonlinear chirp, including
putting in extra adjustable lenses, other optical elements, rotating the grating angles or us-
ing non-uniform grating grooves, using an “Offner triplet stretcher” with multiple adjustable
mirrors, and so on [2]. In all cases the disadvantages are (1) More optical components (espe-
cially adjustable optical components) mean more complexity, more difficulty in alignment,
more cost, and usually more optical loss; (2) Adjustment to alter the chirp may require
realignment.

Another proposal along these lines is the “grism” (prism with grating etched into it),
which can compensate linear and quadratic chirp [2,8,9]. The same disadvantages mentioned
above apply here; additionally, in this design, the pulse must travel through prism glass
after being completely compressed (spatially and temporally), which limits high-peak-power
applications [9].

There are many other ways to control nonlinear chirp, that are effective (at least over
small bandwidths [10]) but not tunable. They include thin-film structures (chirped mirrors,
Gires-Tournois interferometers [1, 2] and similar multilayer-thin-film structures [11]) and
fiber-optic techniques (using specially-constructed fibers [2] or fiber Bragg gratings [12,13]).
These lack tunability, and therefore are not very effective in cases where the dispersion is
not known beforehand, or varies based on operating conditions. If they have any tunability
at all, it is very limited—typically involving just one degree of freedom, such as a mirror
spacing [14], a temperature, or a strain [15]. This compares unfavorably to the three degrees
of freedom of the device described in this work.

3.3 Plate design and theoretical analysis

The plate is made from fused silica, with cross-section shown in Fig. 3.2(a), for the case
of three step-heights. (The plate can also have two, four, or any number of step heights.)
The plate is placed into a Treacy grating pair (or a similar setup) such that different light-
frequencies pass through different parts of the plate (Fig. 3.2(b)).

The motivation is as shown in Fig. 3.3. The three step heights add relative phases of 0,
2π/3, and −2π/3, with cubed-root-spaced step widths. This combination can approximately
cancel out a quadratic-chirp phase profile, leaving the phase everywhere close to zero, corre-
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Figure 3.2 – (a) Schematic cross-section of the phase plate. (b) Phase-plate incorprotad
into a Treacy grating pair. The cylindrical lens (top left), with focal point at the mirror,
helps avoid spatial distortion of the pulse, as described in the text.

sponding to a sharply-peaked pulse. A simulation is shown in Fig. 3.4. Assuming the original
pulse has a quadratic chirp that roughly doubles its FWHM, the plate can bring the pulse
to near its transform-limited intensity and length. In this simulation, it is assumed that the
pulse has center wavelength 1030nm and Gaussian spectral intensity profile with FWHM
7.8nm (corresponding to a transform-limited pulse FWHM of 200fs). It is assumed to have
107fs3 of quadratic chirp, which increases the FWHM to about 500fs. Notice in Fig. 3.4 that
the area under the curve of the corrected pulse is somewhat lower than the original. That
extra intensity was pushed into a long, but quite weak, tail, not shown in Fig. 3.4.

2

0

2

Frequency

P
ha

se
 (

ra
d) π

-π

3

0

3

Frequency

P
ha

se
 (

ra
d) 2π

-2π

0

Frequency

P
ha

se
 (

ra
d)

π/3

-π/3

Figure 3.3 – Left: Phase profile of original pulse, assumed to have quadratic chirp. Cen-
ter: The extra phase added on by the plate, on account of different frequencies passing
through different thicknesses of SiO2. Right, the final phase of the pulse stays close to zero,
corresponding to a pulse with a sharp peak at time zero.

In its cross-section, the plate is somewhat similar to static phase masks discussed in the
literature [3, 7]. Equally important, however, is the top view of the mask, designed to make
the plate tunable, as shown and explained in Figs. 3.5–3.6. In theory, it should be possible
to independently tune the compensation of linear, quadratic, and cubic chirp, simply by
moving the plate, which would be mounted on a translation-and-rotation stage.
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Figure 3.4 – Simulation of pulse shortening using the phase plate. See text for detailed
parameters of simulation.

Figure 3.5 – Top view of plate. Each color represents a different thickness.

3.4 Methodology for making plate

The plate was made by evaporating SiO2 or Al2O3 onto a 500µm-thick fused silica plate.
In this work, all plates used the three-step-height design, which required two evaporations
through two different masks. These metal evaporation masks were custom-ordered from
Photo Etch Technology, and were fixed to the plate with wax and aligned by hand in a
microscope. The deposition thickness was calibrated and checked by either scanning-contact-
probe profilometry or transmission spectrum measurements. (The latter was only possible
for Al2O3 depositions.)

Two sets of masks were made, each using the pattern in Fig. 3.5. The first was 9 cm
along the bottom, 2.25 cm along the top, and 6 cm tall; the second was scaled down by a
factor of three. The second (smaller) phase plate was used for the work described below, as
its size was a better match for the spread of light within the Treacy grating pair of the laser
under test.

3.5 Frequency-resolved optical gating

The phase plate is designed to reduce the duration, and increase the peak power, of the
pulse. To test its effectiveness, we used the Frequency Resolved Optical Gating (FROG)
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Figure 3.6 – Three possible ways of moving the plate relative to the grating-dispersed light:
(a) Small positive quadratic chirp; (b) Large negative quadratic chirp; (c) Intermediate
positive quadratic chirp, plus positive cubic chirp. (d) More generally, by moving the plate
as shown, one can separately compensate (i) quadratic, (ii) linear, and (iii) cubic chirp.

technique [16,17] to characterize the pulse, with and without the phase plate.

3.5.1 FROG overview

The Second-Harmonic-Generation Frequency Resolved Optical Gating (SHG-FROG) tech-
nique [1,16,17] is one of the standard methods for completely characterizing ultrafast light-
pulses. The basic setup is as shown in Fig. 3.7. It involves splitting the pulse into two copies
using a Michelson interferometer, then passing the combined pulse through an SHG crys-
tal, and measuring the result with a spectrometer. The resulting dataset is two-dimensional:
Intensity as a function of both frequency and mirror position (i.e., delay between the pulses).

SHG
crystal

SpectrometerBeamsplitterMoving
mirror

Fixed
mirror

Figure 3.7 – Simplest FROG setup

If the (complex) electric field of the pulse is E(t), then the FROG data is given by:

IFROG(ν, τ) =

∣∣∣∣∫ ∞
−∞

E(t)E(t− τ)e−2πiνtdt

∣∣∣∣2 (3.3)

where ν is the SHG light frequency and τ is the delay between the two copies of the pulse.
If the delay τ is significantly longer than the length of the pulse, then the two copies of the
pulse will not overlap, so there is no SHG between them, and IFROG approaches zero. (The

61



SHG from within a single copy of the pulse is suppressed in the measurement, as discussed
below.)

In the setup shown schematicaly in Fig. 3.7, the FROG measurement is a many-shot
measurement: One measurement for each delay as the moving mirror is scanned. However,
the same data can be obtained in a one-shot or few-shot way as described below.

3.5.2 Initial FROG setup (GRENOUILLE)
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Figure 3.8 – Overview of GRENOUILLE setup. All lenses are cylindrical.

Initially, the measurement was set up using GRENOUILLE (GRating-Eliminated No-
nonsense Observation of Ultrafast Incident Laser Light E-fields) [18,19], as shown schemat-
ically in Fig. 3.8. Although the experiment was eventually switched to a different configura-
tion, we will nevertheless explain how GRENOUILLE works, as it is helpful for understand-
ing the final setup. GRENOUILLE sets up SHG-FROG as a one-shot measurement, with
different delays along one axis and different frequencies along the other.

The different delays are set up by passing the light through a Fresnel biprism (glass
prism with large apex angle). This splits the pulse into downward-traveling and upward-
traveling sub-pulses. At the top of the BBO, the upward-traveling pulse had to travel a
longer distance, so is delayed relative to the downward-traveling pulse; at the bottom of the
BBO, it is the opposite. Therefore, the SHG at different delays is spread to different vertical
parts of the crystal. A cylindrical lens focuses the different vertical parts of the crystal onto
different pixel-rows of the CCD, so that this can function as the delay axis. Conveniently,
the same setup ensures that the SHG-FROG measurement is “background-free”, i.e. the
signal is zero when the delay is longer than the pulse-width. This is because the collected
signal comes only from SHG generated by one upward-traveling and one downward-traveling
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photon, and not from two downward-traveling or two upward-traveling photons, thanks to
spatial filtering as shown in Fig. 3.8.

The different frequencies are resolved by taking advantage of phase-matching, which
causes light of different SHG frequencies to come out more strongly at different angles.
A lens ensures that the light enters at a spread of different angles; in order for all the differ-
ent possible SHG frequencies to be visible, the lens is chosen to ensure a spread of incoming
angles at least as wide as the spread of SHG output angles. A second lens converts the
different angles into different positions on the CCD, thereby creating the frequency axis.
Note that this sort of frequency spread due to phase-matching only occurs in the top view,
not the side view, of Fig. 3.8. This is because of the relationship between the crystal’s
orientation and the light propagation direction. In the top-view, there is an approximately
linear dependence of phase-matching angle and frequency. In the side-view, the angle varies
quadratically with frequency, so in practice there is a negligible angle spread.

Initially, it was attempted to characterize pulses using GRENOUILLE, but the technique
was unsuccessful as described in the next section.

3.5.3 Modified FROG setup

There were two problems that were discovered upon running pulses through the GRENOUILLE:
Poor frequency resolution and insufficient temporal range. There is a recently-developed vari-
ant of GRENOUILLE tailored for large temporal range (up to 15ps) and correspondingly fine
frequency resolution [20]; however, it could not be used due to time and budget constraints.
Instead, the traditional GRENOUILLE described above was modified by incorporating ele-
ments of FROG. In this section, we describe these modifications.

First, we discuss the poor frequency resolution. This is illustrated in Fig. 3.9, showing
the GRENOUILLE measurement on the left. (Poor frequency resolution corresponds to
blurring in the left-right direction.) This problem was addressed by using a diffraction
grating to spread out the SHG frequencies better; the results are shown on the right side of
Fig. 3.9.

Figure 3.9 – Example image showing improvement in frequency resolution by using a grating
(right) instead of the GRENOUILLE technique (left).
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The cause of the poor resolution is the inadequate group velocity mismatch of the 8mm-
thick BBO crystal used. As shown in Fig. 3.10, at the angle where 515nm light is maximally
emitted (perfectly phase-matched), all the light in the range 514.5–515.5nm is also signifi-
cantly emitted. As it turned out, this degree of frequency separation was inadequate for the
specific laser tested.
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Figure 3.10 – Calculation illustrating the frequency separation when running
GRENOUILLE with an 8mm-thick BBO SHG crystal. At the angle where 515nm light
is perfectly phase-matched, this plot indicates that light at 514.5nm and 515.5nm is still
reasonably well phase-matched.

The grating to improve frequency resolution was installed as shown in Fig. 3.11. A normal
(round not cylindrical) lens was used to image the BBO onto the CCD, thereby throwing out
the inadequately-resolved frequency spread due to phase matching. Instead, the frequency
spread came entirely from the reflective grating. Other configurations were attempted, where
frequency spread could come (in varying degrees) from both phase-matching and the grating,
but it was found that the configuration of Fig. 3.11 gave the sharpest resolution.

The second problem discovered during GRENOUILLE testing was an insufficient range
of temporal delay—for example, note the vertical cropping in Fig. 3.9. The GRENOUILLE
was designed to cover a delay range from −1.3ps to +1.3ps, based on the presumed length
of the pulse. It turned out that this was enough to cover the main peak, but not the tail,
which was measureable up to a delay of ≈5ps. (For proper pulse reconstruction with FROG,
it is important to get the whole FROG trace, including the tails, and not just the central
peak [17].)

The temporal delay problem was solved by switching to a sort of FROG-GRENOUILLE
hybrid. While GRENOUILLE is a one-shot measurement, and FROG is hundreds of shots,
the technique pursued here required ten or so shots for a full pulse measurement. As shown
in Fig. 3.11, a Micheleson interferometer was used to create two well-separated copies of
the pulse. However, the interferometer was deliberately misaligned, to center one copy of
the pulse in the bottom half of the biprism and the other in the top half. One or more
thick glass plates delayed the lower half so that the two copies would arrive approximately
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Figure 3.11 – Final FROG setup. All lengths in cm. The pieces of glass covered half
the beam and were switched in and out to cover different parts of the delay range. The
cylindrical telescope spread out the light vertically, while the cylindrical lens compressed
the light horizontally (from left or right towards center). Each telescope consisted of an
f = −5cm diverging lens spaced 10cm from an f = +15cm converging lens.

the same time, but by adjusting the interferometer, the exact delay could be varied. Just
as in GRENOUILLE, each CCD image captured not just a single delay, but a range of
various delays spanning ≈2.5ps. Adjusting the interferometer changed the central delay in
the CCD image, so by stitching together a few images, the full range of FROG signal could
be measured. In practice, however, many more CCD images than necessary were taken—as
many as 35 images per pulse. This way, it was possible to average over the overlapping areas,
and ignore the areas near the edges of the CCD. This made the images higher-quality and
more uniform. Conveniently, it was only necessary to measure positive delays, not negative,
because of the symmetry in the FROG image. An example composite FROG trace image,
made by appropriately gluing and averaging a large number of individual images, is shown
in Fig. 3.12. This is not quite the final image used in the FROG analysis; the last step (not
shown) is to replace the cropped half with a mirror image of the higher-quality half.

Figure 3.12 – An example FROG image (rotated 90◦): Different delays correspond to dif-
ferent horizontal positions and different frequencies correspond to different vertical positions.

It may seem like unnecessary effort to make two very-well-separated pulses at the inter-
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ferometer, then use glass plates to make them arrive at the same time. However, this was
essential, as the pulse heading towards the top half of the biprism also unavoidable partly
passed through the bottom half and vice-versa. The scheme used here prevented that effect
from altering the data.

Another potential concern is pulse distortion upon passing through glass. However, a
calculation using the typical dispersion of glass indicated that distortion would be negligible
even for many-centimeters-thick glass, given the duration, bandwidth, and frequency of the
pulse.

An important aspect of the experiment is calibration of the delay and frequency axis.
The delay axis calibration is straightforward in this setup, and actually requires no extra
work besides the data processing already required. Since the Michelson interferometer is
on a calibrated translation stage, it was known how much the delay changed when the
interferometer setting was changed. For example, in Fig. 3.12, images were captured each
time the mirror was translated 50µm, which corresponds to a 0.333ps shift in delay between
successive CCD images. Meanwhile, the image-gluing routines involved calculating the shift
(in pixels) between successive CCD images, which was about 57 pixels in the case of Fig. 3.12.
Therefore the calibration was that each pixel corresponded to 5.85fs delay.

For the frequency axis, the glass plates in Fig. 3.11 were removed while the two arms
of the interferometer were set to various path differences rather close to zero. First the
zero-path-difference point was measured; this is where the FROG image fluctuates between
very bright and completely dark. Next, the arms were moved farther and farther apart.
Since the interferometer acts as a sinusoidal frequency filter, there are stripes in the FROG
image along the frequency axis, as shown in Fig. 3.13. In this example, the dark horizontal
stripes are 650GHz apart, thanks to the interferometer mirrors being separated by 230µm.
Computer analysis finds a 33-pixel separation between stripes. Therefore, the calibration in
this case is that each pixel corresponds to a 20GHz change in SH frequency. This procedure
was always repeated for two or three different interferometer positions as a consistency check.
The system was re-calibrated each day, although it remained quite stable.

Figure 3.13 – An example image (rotated 90◦) during a FROG frequency calibration. The
dark horizontal stripes are 650GHz apart, thanks to the interferometer mirrors being sepa-
rated by 230µm.
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3.5.4 FROG algorithm

Since there is a nonlinear relation between a pulse and its FROG signal, a complex numerical
algorithm is required to infer a pulse from its FROG signal. The algorithms used here were
variants of the “power method principal-components generalized-projection algorithm” [21].
All code used is available online [22].

Before attempting to analyze the FROG signal, it was first pre-processed in a number of
ways: It was smoothed by applying a top-hat filter in Fourier space [17], the background was
subtracted off (where the background level was inferred from the lowest-average-intensity
8 × 8 block of pixels), and the image was downsampled from the original high-resolution
CCD image to usually 256 × 256 pixels. The downsampling was performed by taking the
delay- and frequency-calibration into account, so that in the final downsampled image, the
time- and frequency intervals had a fast-Fourier-transform (FFT) relationship:

∆τ ×∆ν =
1

N
, (3.4)

where ∆τ is the delay-difference between pixels bordering each other vertically, ∆ν is the
optical frequency difference between pixels bordering each other horizontally, and N ×N is
the downsampled image size. This relationship is a prerequisite for the FROG analysis. The
pixel count, usually 256 × 256, was chosen based on trial-and-error with the data: Lower
resolution often had problems with image cut-off and detail loss, while higher resolution
was both slow and prone to getting stuck in local minima. The exact value 256 was chosen
because the FROG algorithm runs somewhat faster when N is a power of two, since then
the FFTs are more efficient.

Following the pre-processing, the N × N -pixel image is put into the main FROG algo-
rithm. We will first describe the “power method principal-components generalized-projection
algorithm” as described in Ref. [21], then below we will describe the variations used in this
work.

We rewrite Eq. (3.3) for FROG intensity as follows:

EFROG(ν, τ) =

∫ ∞
−∞

E(t)E(t− τ)e−2πiνtdt (3.5)

IFROG(ν, τ) = |EFROG(ν, τ)|2

where IFROG is the actual FROG signal and EFROG is the (complex) “FROG amplitude”.

Broadly, the algorithm is as follows:

1. Start with a guess for the pulse field E(t).

2. Plug E(t) into Eq. (3.5) to get the guess for EFROG.

3. Improve the guess for EFROG by keeping the complex phase of each entry unchanged,
but correcting the absolute value to agree with the experimentally-measured

√
IFROG.
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4. Use the “power method” (described below) to generate a new pulse field E(t) that
agrees as closely as possible as possible with this guess of EFROG.

The more detailed procedure for Step 2, going from E(t) to its EFROG, is as follows. Write
the discretized E(t) as (E1, E2, . . . , EN). Then take the outer product of E(t) with itself,
rearrange the entries, and do a Fourier transform:E1E1 E1E2 · · ·

E2E1 E2E2
...

. . .

 rearrange−−−−−→
entries

E1E1 E1E2 · · ·
E2E2 E2E3

...
. . .


FFT each−−−−−→
column

 ↑ ↑
EFROG(ν, τ = 0) EFROG(ν, τ = ∆t) · · ·

↓ ↓

 (3.6)

For Step 4, going from EFROG to E(t), one starts by doing the reverse of Eq. (3.6), and
then the problem becomes to approximate an N × N matrix M , as accurately as possible,
as the outer product of an N -entry vector v with itself: M ≈ vTv.

A related but more famous mathematical problem is “rank-one matrix approximation”
(or more generally, low-rank matrix approximation), a problem with applications image-
compression and elsewhere. This problem involves approximating an N × N matrix as the
outer product of two different vectors, M ≈ u†v. The solution, according to the Eckart–
Young theorem, is to start with the singular value decomposition: M =

∑N
j=1 u

†
jσjvj, where

σj are scalars (the “singular values”) and uj, vj are normalized complex vectors. Take the
largest (in absolute value) singular value σ1, and then the closest possible outer-product
approximation to M is u†1(σ1v1).

Algorithms for calculating the SVD are implemented in all linear-algebra program li-
braries, and faster algorithms that find only the largest-absolute-value term are also com-
mon. As an alternative method, the “power method” can be used [21]: If u is an initial guess
for u1, then MM †u is a better guess; likewise, if v is the initial guess for v1, then M †Mv is
a better guess.

Getting back to the real problem, we want an outer product of a vector with itself,
M ≈ vTv. If M were symmetric, the Eckart–Young theorem would automatically give a
decomposition of this form. However, M may not be symmetric. A few approaches are
possible: M can be symmetrized (i.e., use (M +MT )/2) before applying the power method;
or just the left or just the right singular vector can be used; or, as proposed in Ref. [21], both
the left and the right singular values can be separately computed, then averaged directly
or indirectly in the next iteration of the algorithm. Tests showed that all these algorithms
succeeded with roughly equal probability, so for convenience, the left singular vectors were
used exclusively. More specifically, in Step 4, if u is the previous guess for the E(t) vector
and M is the EFROG matrix in “outer-product form” (see Ref. [21]), the MM †u was the next
guess for E(t).
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Unfortunately, due to the complexity of the pulses, this algorithm converged rather un-
reliably. The algorithm was therefore modified and extended in a few ways as described
next.

First, while Steps 2 and 4 work with the time-domain pulse E(t) in Ref. [21], it is equally
possible to use the frequency domain. More specifically:

Time domain: EFROG(ν, τ) =

∫ ∞
−∞

E(t)E(t− τ)e−2πiνtdt (3.7)

Frequency domain: EFROG(ν, τ) =

∫ ∞
−∞

Ẽ(ν ′)Ẽ(ν − ν ′)e−2πiν′tdν ′ (3.8)

where

Ẽ(ν) =

∫ ∞
−∞

E(t)e−2πiνtdt, E(t) =

∫ ∞
−∞

Ẽ(ν)e2πiνtdν

When finding the best-guesss E starting from EFROG, one can do an outer-product approxi-
mation in either the time or the frequency domain. In fact, by switching back and forth, one
winds up with a more robust procedure, less liable to become trapped in a local minimum.

Second, for complex pulses, the algorithm has a severe aliasing problem, i.e. the pulse
“wraps around” connecting the beginning and end. (This “wrapping around” is due to the
FFTs at the core of the algorithm.) In theory, one ought to use enough data that the field
is very close to zero for the first 25% and last 25% of datapoints in the time-domain or
frequency domain. However, for the complex FROG traces in this work, this would have
required a huge number of datapoints—as many as 2048× 2048 pixels—which would make
the algorithm far too slow to use.

Part of the problem is that the time-domain and frequency-domain step size need to
satisfy the FFT relation, Eq. (3.4). In order to pad the outer 25% of each side of the FROG
trace with zeros (in both time and frequency direction), the number of pixels must increase
by a factor of sixteen.

Although a fully-padded FROG trace is certainly ideal [17], one nevertheless wants to
have an algorithm which is reasonably robust to a FROG trace approaching the edges of
the available pixels. For this reason, a novel anti-aliasing algorithm was used. Four variants
were used in various combinations. First, the anti-aliasing could occur during Step 2 or Step
4. Second, the anti-aliasing could occur in the time-domain or in the frequency-domain. The
time-domain anti-aliasing is functionally very similar to padding the signal with zeros in the
time-domain, while the frequency-domain anti-aliasing is similar to padding with zeros in
the frequency domain.

For the exact implementation, consider the time-domain pulse data (E1, E2, . . .), and the
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“outer product form” matrix from Eq. (3.6):
E1E1 E1E2 · · · E1EN
E2E1 E2E2 E2EN

...
. . .

...
ENE1 ENE2 · · · ENEN


The entries in the top-right and bottom-left parts of this matrix are the product of the field
very early in the pulse with the field very late in the pulse, which would correspond to a
large delay between the two copies of the pulse. Such a large delay, in fact, falls outside the
range of delays measured in the input FROG trace (−N/2 to +N/2). They are only present
due to aliasing. Therefore it makes more sense to set these values to zero.

Similarly, consider the frequency-domain outer product form matrix:
Ẽ−N/2Ẽ−N/2 Ẽ−N/2Ẽ−N/2+1 · · · Ẽ−N/2Ẽ+N/2

Ẽ−N/2+1Ẽ−N/2 Ẽ−N/2+1Ẽ−N/2+1 Ẽ−N/2+1Ẽ+N/2
...

. . .
...

Ẽ+N/2Ẽ−N/2 Ẽ+N/2Ẽ−N/2+1 · · · Ẽ+N/2Ẽ+N/2

 .

The entries in the top-left and bottom-right parts of this matrix are the product of very low
frequency components with each other, or very high frequency components with each other.
These correspond to very low and very high sum-frequencies. Such extreme frequencies, in
fact, fall outside the range of frequencies measured in the input FROG trace. They are only
present due to aliasing. Therefore it makes more sense to set these values to zero.

It is worth emphasizing that these are not meant to be particularly rigorous explana-
tions; they oversimplify the coupling between time and frequency domain. Nevertheless,
these modifications of the algorithm were found to be generally effective at improving the
convergence and reliability.

As a final note, when multiple measurements were taken, the reconstruction of one pulse
was sometimes used as the “seed” (initial guess) of the reconstruction of another pulse.
However, this was used cautiously, cross-checking against randomly-seeded reconstructions,
in order to be sure that any inferred similarities between pulses were true aspects of the
pulses, not artifacts imprinted from using using the same seed.

3.5.5 Verification of FROG reliability

The accuracy and reliability of the FROG pulse characterization was verified by altering
the Treacy grating-pair configuration. Based on the light frequency and diffraction angles,
it was inferred that altering the separation between gratings by a distance d should change
the linear chirp by (2.89 THz2 cm−1)× d. Likewise, it should not affect the spectrum at all.
Both of these expectations are convincingly demonstrated in Fig. 3.14.
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Figure 3.14 – FROG traces at two different Treacy settings. Top: Experimental data.
Center: Best fit. Bottom left: As expected, the intensity spectrum is almost the same for
the two Treacy settings. Bottom right: The difference in phase between the two settings is
a parabola as expected. Note: The dashed line is the best-fit parabola, not the ab initio
expected parabola. However, the two parabolas are consistent within the experimental un-
certainty, which was due to difficulties in precisely measuring the grating-grating distance
change.

3.6 Demonstration of pulse shortening with phase plate

The pulse from the laser had a weak low-frequency wing; when the Treacy compressor was
set to optimize the main pulse, the wing arrived many picoseconds later. A razor-edge in
the compressor was used to cut off the wing, in order to better focus on the main pulse.

3.6.1 Configuring plate in laser

An important requirement, discovered early in testing, is the lens shown in Fig. 3.2(b). The
cylindrical lens is supposed to focus light on the plate. In a double-pass configuration, it is
impossible to achieve perfect focus in both passes; nevertheless, by putting the focus at the
mirror, using a long focal length, and keeping the plate near the mirror, the requirement is
adequately met.
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The purpose of the lens is to reduce spatial distortion of the pulse—the phenomenon where
the left half of the light spot, for example, might have a very different length and chirp profile
than the right half. This phenomenon was strikingly visible in FROG, as spatially shifting
the beam would change which part of the spot was measured by the FROG, and could
dramatically alter the FROG trace. Another clear indication was a FROG trace lacking
the appropriate symmetry between positive and negative delay. This could occur because
the positive and negative delay parts of the signal in the FROG trace are generated from
different (spatial) parts of the beam.

Spatial distortion results from the plate when a single frequency overlaps one or more
step-edges. Depending on the exact propagation direction of the light (within the beam),
the energy passing through the two sides of the step-edge may interfere constructively or
destructively. In particular, the laser entered the Treacy grating pair as a collimated beam
about 1mm in diameter. Without a lens, any given frequency component will maintain
about a 1mm spread, which meant that, in a typical mask position, a large proportion
of light frequencies passed through two or even more different step heights, thus getting
spatially redirected.

Due to space constraints, the one-lens setup shown in Fig. 3.2(b) was not used; instead,
one lens was used to focus, and a different lens was used to re-collimate.

3.6.2 Pulse characterization and theoretical improvement

The phase and intensity of the original pulse in both time and frequency domain are shown
in Fig. 3.15, when the Treacy was set to a near-optimal position (in terms of minimal au-
tocorrelation FWHM). Using this data, it is possible to calculate theoretically how much
improvement might be possible if the linear and quadratic chirp were ideally corrected.
Mathematically, the phase was mathematically modified by adding every possible combina-
tion of linear and quadratic chirps, and the resulting pulses were ranked by some measure
of time-domain pulse sharpness. These tests indicated that it should be possible to only
modestly improve the pulse by adjusting linear and quadratic chirp: The FWHM can be
reduced by about 25% (but the “improved” pulse actually has much larger wings); the RMS
pulse-length can be reduced by about 15%, and the inferred SHG from the pulse can be
increased by about 40%, according to these calculations. (The possible improvement in-
cluding ideal cubic chirp correction was only slightly better.) These modest improvements
can be contrasted with the dramatic improvement in Fig. 3.4 if the pulse truly starts with
quadratic chirp, rather than the much-higher-order chirp of this pulse. The fundamental
reason is that the frequency-domain phase (see bottom of Fig. 3.15) is already quite flat
where the intensity is high. At the same time, the part where the pulse could be improved,
i.e. on the wings where the phase is not flat, the phase varies so suddenly and rapidly that
a quadratic or even cubic chirp cannot well describe it. (This pulse could be sharpened in
a more traditional way by filtering its high and low frequency sides, but this comes at the
cost of reduced intensity.)
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Figure 3.15 – Pulse characterized by FROG without the phase plate. Top: Time domain.
Bottom: Frequency domain. Blue curves: Intensity. Green curves: Phase.

3.6.3 Measured pulse improvement due to plate

As mentioned, the chirp profile of the laser under test was not a good match to the plate
design, consisting mainly of higher-than-cubic-order chirp. Nevertheless, we confirmed that
the plate was functioning as expected in the laser, and we did in fact confirm a modest
improvement in the laser pulse from the properly-positioned plate.

Fig. 3.16 confirms that the plate has the expected detailed effect on the pulse phase.
Moreover, the plate can, in fact improve the pulse in line with the modest expectations
described in Sec. 3.6.2: As shown in Fig. 3.17, the plate increases the peak intensity by
about 12%, and decreases FWHM by 20%.
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Figure 3.16 – Phase plate alters the pulse exactly as expected. In this case, the plate was
put so that there was one step-edge in the middle of the beam. As expected, the intensity
went somewhat down at the step-edge (due to spatial pulse distortion, see Sec. 3.6.1), while
the phase jumps by 2π/3.
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Figure 3.17 – Compared to the best pulse achievable without the plate, the plate here has
increased the peak intensity and reduced the width. (This plot compares the best pulse
obtained without the plate to the best pulse obtained with the plate; these were actually
at different Treacy settings. Therefore the “no plate” measurement here is a different pulse
than the one in Fig. 3.16.)

3.7 Conclusions and future work

For reasons described in Sec. 3.6.2, the detailed quadratic-chirp-canceling design of the plate
was not specifically useful for improving the pulse of this particular laser. In fact, the
data shown in Figs. 3.16–3.17 had just one step-edge in the beam. Nevertheless, the phase
modification shown in Fig. 3.16 is a gratifying validation of the underlying idea, the plate
construction, and the FROG methodology for validation.

Testing additionally drew attention to the importance of spatial pulse distortion associated
with the step-edges. Although this is mitigated by the lens (see Fig. 3.2(b)), it could not
be eliminated particularly well, because geometric constraints made it impossible to put the
plate very close to the mirror. (Unless the plate is right at the mirror, it is impossible to have
the light frequencies focused on the plate in both of the two passes of light.) This frustrated
efforts to investigate the effect of the plate where the step-edges were too close together:
A pulse with complex spatial distortion cannot be analyzed by FROG. In future work, a
number of improvements are possible: the Treacy grating compressor could be redesigned to
allow the plate to be placed right next to the mirror; the steps could be deposited directly
onto the mirror rather than using a separate plate; a single-pass configuration could be used;
or at least, a very long focal length lens could increase the confocal parameter and allow
both passes to be better in focus.

More importantly, in future work, we plan to use a different laser, where the chirp profile
is a better match to the design of the plate. This will allow a clearer test of the extent to
which the plate is capable of improving pulse quality. Work in that direction is ongoing.
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4 Field-effect photovoltaics

4.1 Background and overview

In this chapter, we discuss Screening-engineered field effect photovoltaics, a new architecture
for solar cells. (Non-solar-related applications of the architecture are discussed briefly in
Sec. 4.4.) In the remainder of this section, we give a motivation and overview, and in
Sections 4.2 and 4.3 we describe two flavors of the architecture, including design principles,
simulations, and experiments. We give some conclusions in Sec. 4.4.

4.1.1 Undopable materials

The most common basis of solar cells is the p-n junction. Unfortunately, lots of promising
materials for these cannot be doped to both p- and n-type without degradation—or in some
cases, cannot be doped to both p- and n-type at all. Some examples follow:

• Oxides, sulfides, and other II-VI semiconductors are promising solar cell materials due
to their abundance and low materials processing costs [1]. Unfortunately, they tend
to self-compensate, such that their doping cannot be reversed. For example, Cu2O
might be a promising solar cell candidate, but is natively p-type. Despite much effort,
there is no convincing evidence that n-type Cu2O has ever been made; indeed, there
is evidence that n-type doping is impossible [2]. Likewise, ZnO would be a promising
candidate for UV-LEDs, but cannot be made p-type (excepting rare reports of low-
quality materials) [3]. Another important example is InxGa1−xN, which is natively n-
type. As x increases, p-type InxGa1−xN becomes a progressively worse semiconducting
material. This has been the primary roadblock to making efficient green diode lasers.

• Nanoparticle (quantum dot) films like PbS and PbSe are promising candidate materials
for solar cells [4]; however, doping is quite difficult as impurities tend to segregate to
the surfaces of the particles.

• Amorphous silicon (a-Si) is natively intrinsic (neither p nor n-type). It can be doped
p- or n-type, but only at significant reduction in minority carrier lifetime. For this
reason, a-Si solar cells are traditionally made as p-i-n junctions, mitigating but not
eliminating the effects of the low-quality doped layers.

• Polymers and other organics are usually impossible to dope both p and n in the same
material system. However, these will not be discussed below, as the large exciton
binding energy in organic materials means that an abrupt heterojunction interface is
required to separate charge; an electric field is not sufficient. Therefore these are not
promising candidates for the field-effect architecture.

Since p-n junctions are impractical or impossible with these materials, other architectures
are sometimes used. In commercial applications, the p-n heterojunction is common, most
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prominently with p-CdTe / n-CdS and with p-CuInxGa1−xSe2 / n-CdS. The most common
difficulty with heterojunctions relate to incompatibilities between the two materials, particu-
larly high interface recombination, poor work-function match leading to weak built-in fields,
materials processing incompatibility, or harmful effects of interdiffusion. For example, the
CdTe-CdS junction yields a remarkably efficient device, as long as the junction is annealed
in the presence of chlorine [5]. Nevertheless, tradeoffs are inevitable. The CdS is not per-
fectly transparent, and the light that it absorbs ends up going to waste [5]. One might like
to replace CdS with a different material which produces an equally good charge-separating
interface, but with higher transparency. Unfortunately, no such material is known to exist.

Another alternative to the p-n junction is the Schottky junction. Unfortunately, these
tend to perform quite poorly in practice. There are two related reasons. First, they usually
have rather low built-in voltages, around half the bandgap or less. The open-circuit voltage
of a solar cell cannot possibly be higher than the built-in voltage, as there would be no
driving force to collect the current. Second, a metal-semiconductor interface has a continuum
of states spanning the semiconductor’s bandgap, and therefore has a very high interface
recombination velocity. Even worse, this high-recombination-velocity interface is right at
the depletion region, where it causes maximal damage to the solar cell performance [6].

In the context of crystalline silicon, there is a special variant of the Schottky junction
called MOS-IL (metal-oxide-semiconductor inversion-layer), where a thin tunnel junction
separates the metal and semiconductor. This both lowers the recombination velocity and
increases the barrier height, with the latter due in part to introduction of electronegative
caesium atoms at the interface. While these may have quite high efficiency [7], they have
can have poor stability [8], and more importantly, it is unclear to what extent this device
concept can be applied in other material systems, since it seems to rely on special properties
of the Si-SiO2 interface.

4.1.2 Field effect architecture

In this work, we propose a new solar cell architecture based on the field effect. As shown in
Fig. 4.1, the field from the gate creates a depletion and inversion layer in the semiconductor.
The overall device is planar, which is helpful for manufacturability.

There are a number of technical challenges that are immediately apparent from glancing
at Fig. 4.1. First, the top electrode is expected to screen the semiconductor from feeling the
gate. Overcoming this problem is a major focus of this work; we use the term “screening
engineering” to characterize the methods for addressing it. Second, holding the gate at a
large voltage would seem to undermine the ability of the photovoltaic device to generate
its own power. But in fact, as long as the gate insulator has low leakage, the gate draws
negligible power. For example, in the experimental results shown below, the gate uses up less
than 1% of the power generated. Third, using three electrodes rather than two would seem
to add undesirable complication to the device, making it harder to integrate and install, and
also making it harder to wire multiple cells in series. Fortunately, there are ways around this.
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Gate electrode

Gate insulator

n-tipe semiconductor
which can't be chemically

p-doped

Depletion region

Bottom electrode

Top electrode

Figure 4.1 – Overview of device architecture. The negative gate voltage causes depletion in
the semiconductor. (Alternatively, the semiconductor could be p-type, with positive gate.)
Screening engineering is the task of designing a top electrode which will not screen the gate
from affecting the semiconductor.

Instead of a conventional gate electrode, a similar effect could be created by, for example, a
ferroelectric gate, or by engineering the interface to contain fixed charge of the appropriate
sign. Alternatively, the bottom electrode and gate can be wired together (a “self-gating”
configuration), as discussed below.

Since both the photovoltaic effect and field effect have been well understood for many
decades, it is hardly surprising that they have been combined from time to time in the past.
For example, in one line of research [9–11], gates have been used to improve semiconductor-
interface surface passivation, repelling minority carriers from surfaces not covered by con-
tacts. In another line of research [12–14], a gate was used to partially replace one of the
doped layers in an amorphous silicon solar cell. Under the grid contact, however, the layer
was doped as usual.

In all these cases, however, the gate was used in addition to a conventional p-n contact,
and if the conventional p-n contact has poor quality, the gate can do very little to improve
the cell. The reason is that a cell performance is related to the logarithm of the overall
saturation current. (The saturation current is J0 in the classic photovoltaic diode equation
J = J0(exp(qV/kBT )−1)−Jphoto [6]; a lower saturation current leads to higher performance.)
For example, if the conventional contact is reduced to cover only 10% of the surface, with no
surface recombination whatsoever in the non-contacted areas, then the saturation current
can go down by as much as a factor of 10 (Fig. 4.2). Unfortunately, this provides a surpris-
ingly small overall benefit to the cell’s performance, raising the open-circuit voltage by just
−kBT

e
ln(10%) = 0.06 V [15]. The goal of this work is to show that larger improvements are

possible with screening engineering.

4.1.3 Screening engineering

We will discuss two methods of screening engineering.

In Sec. 4.2, we discuss using graphene as the top electrode. Graphene, a single-atom-thick
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Figure 4.2 – The sources of saturation current are schematically indicated in the case of
high contact recombination. By covering only a small area with contacts and using the field
effect to create a well-passivated surface elsewhere, the saturation current is reduced [15].
However, this only has limited effectiveness in improving the cell quality, which goes as the
logarithm of saturation current.

conductor, does not fully screen the gate both because it is thinner than its Debye length,
and because has a low density-of-states. We will show theoretical and experimental results
for monolayer and bilayer graphene, and we will discuss more generally the engineering
requirements on this type of system.

In Sec. 4.3, we discuss using a “nanoporous” electrode, consisting (for example) of an
interconnected network of thin (nanoscale) wires. Again, we will show theoretical and ex-
perimental results, and discuss the general engineering requirements.

4.2 Graphene for field-effect control

Graphene is one-atom-thick sheet of sp2-bonded carbon atoms. It has been investigated as a
transparent electrode in solar cells [16,17] thanks to its promising combination of conductiv-
ity, flexibility, transparency, and raw-material abundance (unlike, for example, the common
transparent conductor indium tin oxide, which contains the rare element indium).

Gate electrode

Gate insulator

n-type semiconductor
which can't be chemically

p-doped

Graphene
Depletion region

Bottom electrode

Figure 4.3 – Schematic of device architecture with graphene. For the more detailed exper-
imental geometry, see Sec. 4.2.4.

We are particularly interested in graphene as a non-screening electrode, as shown in
Fig. 4.3. Fundamentally, we are taking advantage of the low density-of-states of graphene,
which in turn is due to both its thinness and its unusual electronic band structure. The
mechanism can be viewed two ways. First, one can say that graphene is thinner than its
own Debye length, and therefore allows fields to penetrate through. Second, one can say
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that the gate fills electronic states, raising or lowering the effective graphene workfunction,
which in turn changes the Schottky barrier height.

These mechanisms are closely related to the concept of quantum capacitance [18, 19],
which was first discussed in the context of the “2-dimensional electron gases” (2DEGs) in
III-V semiconductor quantum wells. (In other contexts it has been called chemical capaci-
tance [20]). A voltmeter measures differences in the electrochemical potential of electrons,
also called Fermi level. Electrochemical potential, as the name implies, is the sum of electric
potential and (internal) chemical potential of free electrons. For example, a p-n junction in
thermal equilibrium has an electric potential gradient across it (the “built-in field”), balanced
by an equal and opposite chemical potential gradient; a voltmeter across the junction would
read 0V despite the presence of an electric potential drop. Applying this general principle
to a capacitor, moving charge from one plate to the other can create an electrochemical po-
tential drop by creating an electric potential drop, or creating a chemical potential drop, or
both. The former corresponds to the conventional (or “geometrical”) capacitance, while the
latter corresponds to quantum capacitance. The low quantum capacitance of graphene [19]
allows electric fields to penetrate it [18].

4.2.1 System modeling methods

Modeling gated graphene devices requires solving three equations self-consistently.

First,
Qgraphene = Dgate −Dsemi, (4.1)

i.e. the charge on graphene (per unit area) equals the discontinuity between the displace-
ment field in the gate insulator (which equals the charge on the gate electrode), and the
displacement field at the surface of the semiconductor.

Second,
χgraphene = χCNP

graphene + ∆χ(Qgraphene) (4.2)

where χ is workfunction, χCNP
graphene is the workfunction of graphene at its charge-neutral point,

and ∆χ(Q) is a function, related to the density of states, that inputs the net charge on the
graphene sheet and outputs the shift in Fermi level. Since extra electrons (negative charge)
occupy higher-energy states (lower ionization energy), ∆χ(Q) is an increasing function of Q.
Its formula for monolayer graphene is [21]:

∆χ(Q) = sign(Q)
~vF
e
|πQ/e|1/2 (4.3)

where e > 0 is the elementary charge and the parameter vF = 1×106 m/s is called the Fermi
velocity of graphene, related to its band structure. χCNP

graphene was estimated as 4.6 eV [21].

Third, the drift-diffusion-poisson equations must be satisfied, which take as inputs χgraphene

and the voltage between the semiconductor electrodes, and return as outputs Dsemi and the
semiconductor’s current. The method for this is described in the next section; for now,
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this step can be thought of as a black box. In practice, this aspect of the simulation was
completed prior to any graphene-specific analysis, using the program COMSOL. Thousands
of combinations of χgraphene and V were simulated. The results were exported to a different
software program, Mathematica, where they were interpolated into a smooth function and
used to calculate self-consistent I-V curves depending on graphene and gate properties.

Three different systems were modeled: Single-layer graphene, bilayer graphene, and
graphite (“infinite-layer graphene”).

For single-layer graphene, we performed the calculation by starting with the initial guess
χgraphene = χCNP

graphene. We looked up the corresponding simulation in the COMSOL output to
get the displacement field at the surface of the semiconductor, Dsemi, which gives updated
guesses for Qgraphene and then χgraphene, at which point the process is repeated. To help
numerical stability, χgraphene was updated each time to only halfway between the old value
and the value inferred from Dsemi. Convergence was tested in all cases.

In practice, there are often charged impurities at the graphene interface, typically negative
(hole-doping) and below 1012 e/cm2. These were not explicitly included in the simulations
above because they correspond merely to a linear shift in Dgate.

For bilayer graphene, the procedure is analogous. The experimental system was not
lattice-matched bilayer graphene; instead, one chemical-vapor-deposition-grown monolayer
graphene sheet was transferred, then a second sheet with a random angle offset. Therefore,
instead of using the bilayer graphene material band structure, the two sheets were treated
as two separate electron systems, each screening each other and the semiconductor. The
distance between graphene sheets was set at 3.3 Å, while the static dielectric constant be-
tween them was set to 2.4ε0 [22]. Therefore the D-fields in all three regions (gate insulator,
semiconductor, and between the two graphene sheets) could be calculated and related to the
free charge on the graphene sheets. The workfunction of the graphene sheet adjacent to the
semiconductor was treated as a free parameter, which we deduced by recursive bisection.
As before, this workfunction is used to calculate Dsemi (using the COMSOL output), which
in turn allows calculation of the D field between the two sheets. This information can be
combined with the fact that the two sheets are electrically contacted (and therefore have
equal electrochemical potentials), in order to infer the charge on the next graphene sheet.
This finally gives D in the gate insulator, which can be compared with the expected value
(Dgate) to move into the next round of recursive bisection.

The procedure for infinite-layer graphene is a straightforward extension of the procedure
for bilayer graphene. Of course, as expected, the value of Dgate does not affect the infinite-
layer system’s behavior.

4.2.2 Semiconductor modeling methods

The flow of charge in the semiconductor was modeled via the drift-diffusion-poisson equa-
tions, using the finite element method, as implemented in COMSOL software (version 4.1).
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The equations to be solved are:

Jn/e = Dn∇n+ nµnE (4.4)

Jp/e = −Dp∇p+ pµpE (4.5)

∇ · Jn = −G (4.6)

∇ · Jp = −G (4.7)

E = −∇φ (4.8)

∇ · (εE) = e(p− n) (4.9)

where n, p are the electron and hole densities, Jn,Jp are the corresponding current densities,
Dn, Dp are diffusion coefficients, µn, µp are mobilities, G is the net generation rate (the rate
at which electron-hole pairs are photogenerated, minus the rate at which they recombine),
and e > 0 is the elementary charge. The diffusion coefficients are inferred from mobility by
the Einstein relations: Dn,p = (kBT/e)µn,p. In the simulations shown here, semiconductor
parameters for silicon were used [23], as shown in Table 1. Not all of these parameters are
independent: ni =

√
NCNV exp(−Egap/2kBT ).

Symbol Value used Definition

NC 2.8× 1019 cm−3 Conduction band effective density of states [23]

NV 2.65× 1019 cm−3 Valence band effective density of states [23]

Egap 1.12 eV Bandgap [23]

µn 1000 cm2/V·s Electron mobility [23]

µp 500 cm2/V·s Hole mobility [23]

Xsemi 4.0 eV Conduction band minimum relative to vacuum [23]

ND 1015 cm−3 n-type dopant density

εsemi 11.8 Semiconductor dielectric constant [23]

ni 1.1× 1016 cm−3 Intrinsic carrier concentration [23]

τn 100 µs Electron minority carrier lifetime

τp 100 µs Hole minority carrier lifetime

A∗/A 2.1 Effective Richardson constant correction [24]

Table 1 – Simulation parameters. Data is drawn from sources where indicated, or otherwise
chosen to correspond to experimental parameters.

The workfunction of the back contact was set to make it an ideal (uncharged) ohmic
contact; i.e. the metal’s workfunction was set to Xsemi + Egap

2
− kBT

e
ln ND

ni
= 4.26 eV.

The incident sunlight was inferred from the “AM1.5G” reference solar spectrum [25].
By numerically integrating, the number of photons above silicon’s bandgap is estimated
as Ginc = 2.74 × 1021 photons/(m2s). The depth-dependent absorption profile was then
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estimated as G(z) = Gincαe
αz, where z < 0 is the depth below the top surface and α =

3 × 103/cm is a typical absorption coefficient for the above-bandgap light in silicon. (A
more detailed approach would take into account the variation of α with frequency, but for
the purpose of these simulations, a very accurate light absorption profile was not necessary.
Indeed, tests confirmed that the detailed absorption profile had no effect on the comparisons
or qualitative results discussed here.) The thickness of the silicon was set at 10 µm, which
is unrealistically small but easier to simulate; again, the simulated thickness had no effect
on the conclusions below.

Shockley-Reed-Hall (defect) recombination was calculated by the usual formula:

RSRH =
np− n2

i

(p+ ni)τn + (n+ ni)τp

Auger recombination was negligible in all simulations, and therefore was normally not cal-
culated.

Back-surface recombination was set to zero, as this effect is negligible (compared to other
recombination sources) in well-constructed cells using back-surface-fields [6]. For the front
surface, minority carrier recombination was assumed to be infinite, while majority carriers
satisfy the Crowell-Sze model combining drift-diffusion and thermionic emission [26]. In this
model, one uses a majority-carrier recombination velocity

vR =
A∗T 2

eNC

= 5× 104 m/s

The barrier heights were calculated in the framework of the Schottky-Mott model—i.e. the
vacuum level is assumed to be continuous, and therefore the barrier height can be related to
the metal workfunction and the semiconductor bandgap and electron affinity [23, 27] (The
semiconductor conduction-band-minimum was taken to be 4.0 eV below vacuum, a typical
value for silicon [23].) In reality, the Schottky-Mott model is a rather poor predictor of
barrier heights [23,27], which vary significantly less than workfunctions. However, the model
is likely to be more accurate than usual in this situation, because the barrier height is being
changed in situ, without any complication from changing surface reconstruction, dangling
bonds, ionic migration, and so forth.

Image-force lowering of the Schottky barrier is taken into account, using the formula
∆φ = (eDsemi/(4π))1/2 [23]. Since the correction was small, we took it into account in
a low-order manner rather than self-consistently: A simulation was done without image-
force lowering; then the Dsemi from that simulation was used to calculate ∆φ; then a new
simulation with lower barrier was used for final results.

The modeled system depends on only one coordinate (z), and is a uniform extrusion in
the other two dimensions. Therefore it is analyzed as a 1D system.

Various tricks were used to increase the likelihood that the simulation would converge.
The system was in fact simulated in a two-step process. First, the thermodynamic-equilibrium
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potentials were calculated. This simulation converges easily because there is only one variable
to solve for, the potential. (The electron and hole concentrations, and hence also the charge
density, is related to the potential via the Boltzmann distribution.) This first step was used
as the initial conditions for the second step, the coupled drift-diffusion-poisson-equations
simulation, which converged much less reliably. (When the first step did not produce good
enough initial conditions for the second step to converge, the minority carrier concentration
was multiplied everywhere by 106 − 1010.) When this simulation converged, the voltages
were gradually swept up and down, outputting the current in each case to get an I-V curve,
and using each converged simulation as the initial conditions of the next. When the finite-
element simulation did not converge, various steps were tried including refining and reshaping
the mesh, and changing calculation parameters including voltage step size and convergence
threshold. When the simulation did converge, similar steps were done regardless, in order
to check that the solution was reliable and robust.

4.2.3 Modeling results

Results from these simulations are shown in Figs. 4.4–4.5. A few points are particularly
worth noting.

First, realistic gate fields Dgate for graphene can reach about 1.5 × 1013e/cm2 for Si-
SiO2 gates [28], and as high as 6 × 1013e/cm2 for electrolytic gates [29]. Therefore, these
models suggest that it should be quite possible to substantially enhance, an even saturate,
the Schottky barrier height, achieving barriers well beyond what would arise from intrinsic
material properties alone. This should also be possible in bilayer graphene, although larger
fields are required. Second, quite high efficiencies should be possible, notwithstanding the
high contact recombination assumed by the model. Third, the workfunction of graphene
depends quite weakly on device voltage; i.e. as an I-V curve is traversed (holding the gate
constant), the workfunction remains largely unchanged. Therefore, the I-V curve of a given
device is expected to look like a normal Schottky diode. In reality, graphene-semiconductor
and related junctions often have I-V curves with unusual shape (for example, Refs. [16, 30],
and see also below), but the reasons remain poorly understood.

4.2.4 Experimental results

Gated-graphene-on-silicon devices were made experimentally in collaboration with the Alex
Zettl group. Starting with an n-type (ND ≈ 1016 cm−3) Si wafer, 100nm thermal oxide
was grown by a dry anneal. After coating with PMMA resist, electron-beam lithography
followed by 5:1 buffered HF etch was used to etch a 2mm×2mm square window down to the
silicon. Graphene was grown by chemical vapor deposition, following the method of Ref. [31].
A graphene sheet on PMMA was placed down, covering all of the Si window and some of
the SiO2, and the PMMA was dissolved in acetone. (This process was repeated twice for
“bilayer” samples.) A Cr/Au contact was evaporated onto an area where the graphene was
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Figure 4.4 – Simulated electric potential (in V) in gated-graphene-semiconductor devices,
with 1.5× 1013e/cm2 gate charge, at short circuit under illumination. Brown is gate, gray is
gate insulator, black is graphene, colors represent semiconductor. Left: Single-layer graphene;
Center: Bilayer graphene; Right: Graphite (infinite layers).
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Figure 4.5 – Simulated Schottky barrier height (left) and solar cell efficiency (center) as a
function of gate charge. Right: I-V curves at 1.5× 1013e/cm2 gate charge.

sitting on SiO2 (not Si), patterned by shadow mask. For a back contact to the Si, the SiO2

was removed with 5:1 buffered HF, then 70nm of Al was evaporated. An ionic liquid gate was
used: A contact was put on SiO2 away from the graphene, then the ionic liquid EMI-BTI (1-
ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, Sigma Aldrich) was dropped
to cover both the contact and the graphene.

The I-V curves are shown in Fig. 4.6, under a 1-sun solar simulator. (The gate leak-
age current was negligible compared to the current through the device.) The gate clearly
has a strong effect on the device, quadrupling the power generation efficiency from ≈ 0.5%
to ≈ 1.8%. (While the relative numbers are reliable, the absolute efficiency measurements
should be taken with a grain of salt for such a small device [32].) Unfortunately, the unusual
I-V curve shape (see previous section), combined with the high series resistance, precluded
a measurement of the Schottky barrier height, which would have made a more useful com-
parison with theory.

In future work, the efficiency could be improved by optimized device structures, particu-
larly to lower the series resistance, and other semiconductors can be explored. We note that
the device can function as a switch in addition to a solar cell, an aspect recently explored in
independent work [33].
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Figure 4.6 – I-V curves for gated monolayer graphene on silicon devices. Gate voltage is
indicated.

4.3 Nanoporous electrodes for field-effect control

An alternative type of screening-engineered electrode is a “nanoporous” electrode. An ex-
ample would be an interconnected percolating network of metal nanowires, laying flat on the
surface of a semiconductor, e.g. Fig. 4.7. These sorts of electrodes have already been explored
as solar cell electrodes for other reasons—they are transparent, conducting, flexible, inexpen-
sive, and (unlike indium-tin-oxide) do not necessarily rely on rare chemical elements [34–37].
From an optics perspective, a properly engineered nanowire film can be even better than
transparent; it can enhance light absorption in the semiconductor by plasmonically scattering
incident light into oblique angles where it is more likely to be absorbed [38,39].

Figure 4.7 – Example of a nanoporous electrode: A percolating silver nanowire film. Image
at 60X; average nanowire length is 25µm. Nanowires dropcast from a solution (SeaShell
Technology) onto a glass substrate.

Intuitively, one expects that such an electrode would allow a gate field to pass through to
the semiconductor beneath, without fully screening it. (This is analogous to how, in classical
electrostatics, an electric field can penetrate through a porous capacitor plate [40].) Below,
we will discuss in more detail the extent to which this occurs.

4.3.1 Design overview

Above (see Sec. 4.1.2 and Fig. 4.2), we discussed how reducing the surface coverage fraction
of a metal in a Schottky junction solar cell can increase its performance, but only to a limited
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extent (increasing voltage by kBT
e

ln(1/f), where f is the surface coverage fraction). Fig. 4.8
shows how nanotechnology can enable a significantly larger performance boost. When the
lateral dimension of the electrode finger w is much smaller than the depth d at which the
potential far from the electrode matches the Schottky interface potential (see Figs. 4.8(a-b)),
one expects the gate field to spread under the electrode as shown in Fig. 4.8(c). Therefore
the effective electron barrier height is larger than the intrinsic Schottky barrier height; in
fact, the electrons in bulk have to pass over a larger saddle-point barrier before reaching the
electrode. On the other hand, if d� w, as in Fig. 4.8(d), then the gate field has essentially
no effect on the semiconductor beneath the contacts. This, therefore, corresponds to the
case discussed above, with only the limited kBT

e
ln(1/f) voltage improvement.
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Figure 4.8 – Illustration for rule-of-thumb (Eq. 4.11) dictating nanofinger width. (a) A
band-diagram for a semiconductor-metal Schottky junction in thermodynamic equilibrium.
(b) At a semiconductor-gate-insulator interface, there is stronger band bending, leading to
inversion at the surface. The quantity d is the depth with the same potential as at the
semiconductor-metal interface. (c) A cross-sectional view of a device where the depth d� w,
the electrode nanofinger width. The two dashed lines are at the same potential. The effect of
the gate “spreads under” the electrode, creating a saddle point barrier that blocks electron
flow into the electrode. (d) In a device where d� w, the field cannot get under the electrode.
Therefore the gate can only yield a limited improvement in the device.

In order to achieve good screening engineering, according to this principle, the maxi-
mum allowable electrode finger width depends on the length-scale over which the potential
varies in the semiconductor. For more heavily-doped semiconductors, the depletion width
is smaller and the potential varies more rapidly. Therefore, the electrode requirement be-
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comes more stringent as doping increases. To be more specific, we assume that the Schottky
barrier puts the metal Fermi level in exactly the middle of the semiconductor bandgap (the
largest barrier typically possible), and we use d = w criterion for maximum electrode fin-
ger width (see Fig. 4.8). Assuming an n-type semiconductor, the Fermi level is kBT

e
ln NC

ND
below the conduction-band minimum in bulk; the charge density in the depletion region is
approximately −NDe; and the Fermi level at the inverted semiconductor-insulator interface
is approximately at the valence-band maximum. Using the Poisson equation, we get the
formula

d ≈

√
2
Egap − kBT

e
ln NC

ND

NDe/εs
−

√
2

Egap

2
− kBT

e
ln NC

ND

NDe/εs
(4.10)

and a corresponding rough criterion for screening-engineered electrode width:

w .

√
2
Egap − kBT

e
ln NC

ND

NDe/εs
−

√
2

Egap

2
− kBT

e
ln NC

ND

NDe/εs
(4.11)

Table 2 shows the numbers, using the parameters of silicon as a typical example. For a
semiconductor with unintentional doping around 1017 cm−3, such as InxGa1−xN, a screening-
engineered porous electrode would need electrode finger widths of the order of 40 nm or less.
Such electrodes exist [41, 42], but nevertheless may be a challenge, whereas lower-doped
semiconductors would be easier (for example, lead salt quantum dots have doping around
1016 cm−3 [43]). On the other hand, the third column of Table 2 shows that the requirements
on the gate insulator are not too stringent, even up to quite high doping.

Bulk doping Maximum electrode
finger width

Gate-induced
charge needed to
get to inversion

Prospects

1014 cm−3 1.5 µm 3× 1010 cm−2 OK

1015 cm−3 400 nm 1× 1011 cm−2 OK

1016 cm−3 130 nm 3× 1011 cm−2 Maybe

1017 cm−3 40 nm 1× 1012 cm−2 Challenging

Table 2 – Prospects for screening engineering varies as a function of semiconductor doping,
assuming the material parameters of silicon. The second column is based on the electrode-
width criterion Eq. 4.11. The “prospects” is based on the discussion in the text.

Table 2 can be supplemented with some additional considerations, still based on the idea of
Fig. 4.8. First, a higher intrinsic Schottky barrier leads to more stringent length requirements
for screening engineering. Second, under forward bias, the semiconductor fields are modified
so as to ease the length requirements (i.e., the short-circuit figure in Table 2 may somewhat
overstate the difficulty).
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4.3.2 Modeling methods

To test more carefully the ideas above, we performed semiconductor modeling, along the lines
of Sec. 4.2.2. In this situation, a 2D finite-elements model was necessary, while the third
dimension was a uniform extrusion. An example structure is shown in Fig. 4.9, although the
actual simulation area (as indicated in the figure) is only half of one repeating unit, with
mirror boundary conditions filling in the rest of the infinite structure.

Figure 4.9 – An example of a periodically-repeating structure being simulated. Brown
is gate, gray is gate insulator, black is electrode, and the colors correspond to voltages in
the semiconductor. The arrow near the top indicates the boundaries of a computer simula-
tion, using mirror boundary conditions. This is a two-dimensional cross-section; the third
dimension need not be simulated explicitly, as it is a uniform extrusion.

All electrodes were taken to be ideal, perfectly-conducting metals. Therefore their interi-
ors were not actually part of the simulation; instead, their surfaces were used as equipotential
boundary conditions. In order to focus on the electronic, not optical, effects, the light ab-
sorption was treated in the same simplified manner of Sec. 4.2.2. (It was checked that,
for the results shown here, shadowing and other effects had negligible consequences on the
simulation results.) All other parameters and approximations are as in Sec. 4.2.2.

One potentially important effect not simulated (due to technical limitations) was tunnel-
ing between the inverted semiconductor surface and the metal electrode. Particularly with
electrochemical gating, a minority-carrier-rich region can be within a few nanometers of the
metal interface, and can therefore tunnel. This effect is conceptually important, as it allows
an open-circuit voltage larger than the built-in field at the metal-semiconductor interface.
(Without the tunneling, this is impossible, as the drift-diffusion equations allow no driving
force for charge extraction.) Even without tunneling, the simulations suggest that screening
engineering has the expected befefits, as discussed in the next section.

In addition to a set of simulations with Vgate = −10 V, simulations were also done of a
“self-gating” configuration. For these, the bottom electrode voltage was set equal to the gate
voltage, corresponding to the situation where the two are wired together. This necessarily has
a slightly lower gate-induced charge than a high-voltage gate, but this may be compensated
by the practical benefits of having only two terminals at both the device and module level.
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Self-gating simulations were performed by sweeping the top electrode voltage (rather than
bottom), holding Vgate = Vbottom = 0. The workfunction of the gate was set to 5.1 eV, the
value of silver—a high-workfunction electrode improves the gating for an n-type device [44].

4.3.3 Modeling results

Some sample finite-elements simulations are shown in Fig. 4.10. As predicted from Fig. 4.8,
the sufficiently narrow fingers have a potential profile that forms a saddle point under the
electrode, which in turn increases the effective barrier height. The corresponding I-V curves
are shown on the right. While the results confirm the importance of a high intrinsic Schottky
barrier, they also indicate how screening engineering can substantially improve the device.

Figure 4.10 – Electric potential plots at short-circuit (left), and I-V curves (right) from
simulations of nanofinger-electrode devices. In (a–c), the top electrode is “ohmic”, with
low (4.45 eV) workfunction. In (d–f), the top electrode is “Schottky”, with higher (4.8 eV)
workfunction. The top-electrode finger width is infinite (a,d), 400 nm (b,e), or 100 nm (c,f).
The shape of the potential is consistent with the expectations from Fig. 4.8: For sufficiently
narrow fingers (c,f), the potential forms a saddle point that increases the effective barrier
height.

Fig. 4.11 shows how open-circuit voltage and power conversion efficiency depends on finger
width. (These simulations have a fixed 10µm separation between fingers.) The “Ohmic”
curves correspond to 4.45 eV workfunction electrode, while the “Schottky” curves correspond
to 4.8 eV workfunction (the same values as above). (The term “ohmic” is justified by its
I-V curve, Fig. 4.10, right side, (a).) The “Green model” [15] dotted curve in Fig. 4.11,
as described in Sec. 4.1.2, is VOC = K + kBT ln(1/f), where K is a constant and f is the
fraction of the surface covered by the metal fingers. This model accounts for purely the effect
of partial surface passivation, but not screening engineering. Fig. 4.11 shows that narrow
fingers dramatically outperform the Green model, and therefore it underlines the importance
of screening engineering.
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finger width. See text for details.

Fig. 4.11 also shows, for comparison, a “p-n junction” simulation. Here, an abrupt p-
n junction was simulated, with planar ohmic contacts on both sides. To be consistent
with the previous simulations, interface recombination at the ohmic contacts was set to
zero. (See discussion above.) Therefore, the only efficiency limit was bulk minority carrier
recombination. This gives the cells significantly higher performance than the screening-
engineered design, where interface recombination continues to dominate even at small finger
widths. Indeed, as expected from the discussion in Sec. 4.1.2, the screening-engineered field-
effect architecture will not outperform an ideal p-n junction, but its reasonably high efficiency
may make it a good alternative when p-n junctions cannot be manufactured, and particularly
when interface recombination and/or low built-in voltage is the efficiency limitation.

Finally, Fig. 4.12 shows the potential in the two-electrode self-gated configuration. These
simulations suggest that the self-gated device can perform with comparable, but modestly
lower, efficiency than the device with a large externally-applied gate.
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4.3.4 Experimental results

As a controlled proof of principle, experimental devices were made in collaboration with the
Alex Zettl group, using electron-beam lithography to make metal nano-fingers on silicon.
Two types of cells were made, one with ohmic top contacts, the other with Schottky.

The ohmic cells started with a p-type silicon wafer (NA ≈ 1016 cm−3), with 100nm
of thermal oxide grown by dry anneal. After coating with PMMA resist, three rounds
of electron-beam lithography were used to define, first, alignment marks, then second, an
exposed silicon device area, then third, aluminum contacts (250nm width, 75nm thickness,
5µm spacing). For the back contact, the SiO2 was etched away with 5:1 buffered HF, then
aluminum contacts were evaporated. To ensure that both the back and front contacts are
intrinsically ohmic, the cell was annealed in argon (150sccm, 475C, 30 minutes). The use of
symmetric contacts means that any rectification is due to the field effect. Finally, the gate
insulator and gate are added by evaporating 150nm SiO2, 1.5nm chrome, and 12nm gold.
(Calculations suggest that this stack should allow about 40% of the light to pass into the
cell, while reflecting or absorbing the other 60%.)

The Schottky cells were similar, but where the metal fingers had a silicon-chrome Schottky
interface (the fingers were 300nm width, 5nm chrome under 50nm gold thickness, 5µm
spacing). Additionally, the silicon was NA ≈ 3 × 1015 cm−3. The aluminum back contact
was annealed before the Schottky contact was deposited.

The I-V curves are shown in Fig. 4.13, under a 1-sun solar simulator. (The gate leakage
current was negligible compared to the current through the device.) The dramatic effect
of the gate is evident, switching the device between ohmic and a moderate solar cell (the
efficiency is estimated at 6% in the Schottky case, although as mentioned above, these
absolute efficiency measurements may not be accurate for such a small device [32].)
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4.4 Conclusion

To summarize, we have discussed design concepts, device modeling, and experimental re-
sults for two types of field-effect based solar cells: Graphene electrodes (or more generally,
low-density-of-states electrodes), and nanofinger electrodes (or more generally, porous elec-
trodes).

There are a few obvious directions for future research, some of which are already un-
der way. First, we discussed the potential of these devices for improving solar cells from
hard-to-dope semiconductors, and we hope to demonstrate that directly with such a semi-
conductor. (The results above used silicon because it is much easier to work with.) Second,
the nanofinger device discussed above was made using electron-beam lithography, which is
impractical for a large-area device such as a solar cell. An appealing alternative is to use
metal-nanowire electrodes, which can be grown chemically in large quantities and then cast
from solution over large areas [34–37]. Yet another alternative, which has been recently ex-
plored by a different group [45,46], is field-effect devices with “buckypaper” electrodes—i.e.,
electrodes from a network of carbon nanotubes. This combines the two device concepts, as
it is simultaneously low-density-of-states and porous.

While we have focused in particular on the potential for improving solar cells, there are
other applications worth exploring. First, light-emitting diodes (LEDs) and laser diodes
could be made in a similar way in order to use hard-to-dope materials (like zinc oxide
and group III-nitrides), and more generally control carrier spillover. Second, low-doped,
hard-to-contact semiconductors (for example, p-type aluminum nitride) could benefit from a
field-effect-induced inversion layer from which carriers could tunnel into the contact. Third,
the device can function as an electrical switch; early explorations of this application by other
groups have already found promising results [33,47,48].
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