
1 Introduction

Written by Steve Byrnes, 2012. Please email me any feedback. My website is http://

sjbyrnes.com . Last update/upload: October 2016.

This is a group of programs written in Python / NumPy for simulating light propagation
in planar multilayer thin films, including the effects of multiple internal reflections and
interference, using the “Transfer Matrix Method”. It can also simulate combinations of thin
and thick films (e.g. a thick piece of glass with a multi-layer antireflection coating on one
side and a mirror on the other side), or purely thick films.

In addition to calculating how much light is transmitted and reflected, the program can
calculate, at any given point in the structure, how much light is being absorbed there. This
is a very important feature for solar-cell modeling, for example.

It can also calculate the parameters measured in ellipsometry.

I wrote out derivations and discussions of the formulas and calculations imple-
mented by this program at: http://arxiv.org/abs/1603.02720. You are encour-
aged to cite that paper if you publish results that come from this software. :-)

2 Files and API

There are four files: (1) tmm core.py contains all the main programs, (2) color.py has
additional color-related functions, like calculating the RGB color of a thin film under re-
flected light, (3) examples.py contains a few example calculations to get you started, and
(4) tests.py contains a number of programs that perform various tests and consistency
checks to confirm that everything is coded and running correctly. There is also the standard
init .py, the home of the main tmm namespace, into which are imported all the tmm core

functions. [To run the color-theory related functions in color.py, you need to download the
package colorpy at https://pypi.python.org/pypi/colorpy/ . But even without that,
you can still run all the other code.]

The API information (list of functions and how to call them) is available at https://

pythonhosted.org/tmm/. I also suggest to look at the functions in the examples submodule
to see examples of various kinds of calculations and plots. (If you’re not sure how to find
this code, it is online at https://pythonhosted.org/tmm/_modules/tmm/examples.html)

3 Other people’s programs

There are many other free (and non-free) programs that do some or all of what this program
does. I have a list at: http://sjbyrnes.com/multilayer-film-optics-programs/

1

http://sjbyrnes.com
http://sjbyrnes.com
http://arxiv.org/abs/1603.02720
https://pypi.python.org/pypi/colorpy/
https://pythonhosted.org/tmm/
https://pythonhosted.org/tmm/
https://pythonhosted.org/tmm/_modules/tmm/examples.html
http://sjbyrnes.com/multilayer-film-optics-programs/

I have done a few consistency checks between my program and others. They tend to agree
perfectly except in the tricky (and somewhat unusual) case of calculating reflected power or
transmitted power when the semi-infinite incoming and/or outgoing medium has a complex
index of refraction. Again, see http://arxiv.org/abs/1603.02720 for further discussion.

4 Installation

Requires SciPy and NumPy to run. The “examples” also use Matplotlib, while the color
calculation part requires ColorPy (https://pypi.python.org/pypi/colorpy). Tested in
Python 2.7 and 3.3–3.5. (For color calculations in Python 3, you need the Python-3-
compatible version of ColorPy at https://github.com/fish2000/ColorPy/ . Install it
via pip or easy install, or just download it directly (it’s pure python, but you need to
treat it as a package, not separate files).1

4.1 Installation for dummies

If you’ve never used Python before, check out http://sjbyrnes.com/python for advice on
installation and getting started.

Let’s say you have Windows or Mac, and you just installed the Anaconda Python distri-
bution https://www.continuum.io/downloads . The next step is to open the “Anaconda
command prompt”, connect to the internet, and then run the command pip install tmm

. All done!

Note that when you install with pip, the package source code winds up in a folder somewhere
on your computer. If you want to look at it or edit it, you need to find it first! The easy
way to find it is to type import tmm; tmm. file into your Python console.

To get going, try typing the following in IPython (pylab mode) or a Spyder console:

>> import tmm.examples

>> tmm.examples.sample1()

1People don’t normally set up packages “by hand”, but it’s not too difficult in a case like this where
the package is pure python, rather than C code etc. See https://docs.python.org/3/tutorial/modules.

html#packages . You download the package file from https://pypi.python.org/pypi/tmm (it’s called
something like tmm-0.1.2.tar.gz), and unzip it. (On Windows you need an unzipping program, http:
//www.7-zip.org/). Your goal is to have a (normal, not zipped) folder named tmm (lower-case), in which
are all the .py files (init .py and tmm core.py and so on, but not setup.py). You may need to move
files or rename the folder to get things in this format. Now that you have this folder, put it somewhere that
Python can find it. (If you’re not sure, type import sys; sys.path into your Python interactive console.
Any folder on this list is an OK place to put your tmm folder. Note that the tmm folder itself (i.e., the files
inside it) should not be on the Python path.) Exit and restart your Python interactive console, and you
should have tmm working.

2

http://arxiv.org/abs/1603.02720
https://pypi.python.org/pypi/colorpy
https://github.com/fish2000/ColorPy/
http://sjbyrnes.com/python
https://www.continuum.io/downloads
https://docs.python.org/3/tutorial/modules.html#packages
https://docs.python.org/3/tutorial/modules.html#packages
https://pypi.python.org/pypi/tmm
http://www.7-zip.org/
http://www.7-zip.org/

A plot should pop up.

5 Units

The program implicitly requires a unit of length. You can use any unit, but keep it consistent.
For example, if wavelength is given in nanometers, the thicknesses of the layers should also
be given in nanometers, and the absorption at a given point will be in (fraction of incoming
light power per nanometer of depth).

3

